
REPUBLIC OF TÜRKİYE

YILDIZ TECHNICAL UNIVERSITY

GRADUATE SCHOOL OF SCIENCE AND ENGINEERING

IOT SECURITY BY DETECTION OF THE NETWORK

INTRUSION TRAFFIC USING DL

Nadia Qutaiba Mohamedsaeed ALSABBAGH

MASTER OF SCIENCE THESIS

Department of Computer Engineering

Program of Computer Engineering

Supervisor

Prof. Dr. Hasan Hüseyin BALIK

July,2024

REPUBLIC OF TÜRKİYE

YILDIZ TECHNICAL UNIVERSITY

GRADUATE SCHOOL OF SCIENCE AND ENGINEERING

IOT SECURITY BY DETECTION OF THE NETWORK

INTRUSION TRAFFIC USING DL

A thesis submitted by Nadia Qutaiba Mohamedsaeed ALSABBAGH in partial fulfilment

of the requirements for the degree of MASTER OF SCIENCE is approved by the

committee on 03.07.2024 in the Department of Computer Engineering, Program of

Computer Engineering.

 Prof. Dr. Hasan Hüseyin BALIK

 Yildiz Technical University

 Supervisor

Approved By the Examining Committee

Prof. Dr. Hasan Hüseyin BALIK, Supervisor

Yildiz Technical University

Dr.Öğr.Üye. Mustafa Utku KALAY, Member

Yildiz Technical University

Doç.Dr. Can EYÜPOĞLU, Member

Hava Harp Okulu

I hereby declare that I have obtained the required legal permissions during the data

collection and exploitation procedures, that I have made the in-text citations and cited the

references properly, that I haven’t falsified and/or fabricated research data and results of

the study and that I have abided by the principles of the scientific research and ethics

during my Thesis Study under the title of IOT SECURITY BY DETECTION OF THE

NETWORK INTRUSION TRAFFIC USING DL supervised by my supervisor, Prof. Dr.

Hasan Hüseyin Balık In the case of a discovery of a false statement, I am to acknowledge

any legal consequence.

Nadia Qutaiba Mohamedsaeed ALSABBAGH

 Signature

This study was supported by the Scientific and Technological Research Council of

Turkey (TUBITAK) Grant No: 2210.

Dedicated to my family

and my best friend

v

ACKNOWLEDGEMENTS

First and foremost, praises and thanks to God, the Almighty, for His showers of

blessings.I would like to express my deepest and sincere gratitude to my research

supervisor, Prof. Dr. Hasan Hüseyin Balık, for his invaluable patience and feedback.

This study could not have been possible without his great support and guidance.

I would like to thank the Republic of Turkey, the Ministry of Higher Education, and

Yildiz Technical University in Istanbul.

Also, I would like to thank the Republic of Iraq, the Ministry of Higher Education, and

the University of Mosul for supporting me in continuing my academic studies.

Thanks, I should also go to my parents for their love, prayers, caring and sacrifices for

educating and preparing me for my future.

Lastly, I would be remiss in not mentioning my family, especially my husband and my

children for their belief in me, keeping me in high spirits, and they give me more love,

understanding, and prayers for continuing to complete this research work.

Nadia Qutaiba Mohamedsaeed ALSABBAGH

vi

 TABLE OF CONTENTS

LIST OF SYMBOLS viii

LIST OF ABBREVIATIONS ix

LIST OF FIGURES xi

LIST OF TABLES xiii

ABSTRACT xiv

ÖZET xvi

1 INTRODUCTION 1

1.1 Literature Review ... 1

1.2 Objective of study .. 10

1.3 Benefit of Study ... 10

1.4 Proposed Study... 11

1.5 Hypothesis .. 12

2 RELATED WORKS 14

2.1 Intrusion Detection Research ... 14

3 METHODOLOGY 24

3.1 Approaches to Solve Attack Detection .. 24

3.1.1 Supervised Deep Learning ... 25

3.1.2 Unsupervised Deep Learning ... 27

3.2 Detect Attacks using DL .. 29

3.2.1 Multi-Layer Perceptron .. 31

3.2.2 Recurrent Neural Network .. 35

4 APPROACH OF DL ALGORITHMS 42

4.1 Approach OF Algorithms ... 42

4.2 Data Normalization ... 44

4.3 One-Hot Encoding .. 45

4.4 Binary Classification ... 46

4.4.1 Binary Classification with MLP Classifier .. 47

4.4.2 Binary Classification with LSTM Classifier ... 48

4.5 Multi-Class Classification ... 49

4.5.1 Multi-Class Classification using MLP Classifier 50

4.5.2 Multi-Class Classification using LSTM Classifier 52

vii

4.6 Compiled Model .. 53

4.6.1 MLP Compiled Model ... 53

4.6.2 LSTM Compiled Model .. 54

4.7 Description of the Network Attack ... 56

4.7.1 Passive ... 56

4.7.2 Active ... 56

4.8 Intrusion Detection System)IDS) ... 57

4.8.1 Intrusion Detection Based on a User's Signature 59

4.8.2 Intrusion Detection Based on a Unusual Behavior 59

4.8.3 Intrusion Detection using Hybrid Methods .. 59

4.9 Confusion Matrix ... 60

5 RESULTS AND DISCUSSION 64

5.1 Programming Environments .. 64

5.2 Datasets .. 65

5.2.1 Denial OF Service (DOS) ... 67

5.2.2 Root to Local (R2L) ... 68

5.2.3 User to Root (U2R) ... 68

5.2.4 Prob ... 68

5.3 Evaluation Metrics ... 69

5.3.1 Binary Classification .. 71

5.3.2 Multi Classification .. 71

6 CONCLUSIONS 75

REFERENCES 77

PUBLICATIONS FROM THE THESIS 85

viii

LIST OF SYMBOLS

Tanh Hyperbolic tangent of activation function

𝑒𝑥 Based on the natural logarithms

Σ The sum of Multiple Terms

≥ greater than or equal to

< less than

σ sigmoid activation

ix

LIST OF ABBREVIATIONS

ADAM Adaptive Moment Estimation

AIDS Anomaly-Based Intrusion Detection System

ANN Artificial neural networks

API Application Programming Interface

AUC Area Under the Curve

CNN Convolutional neural network

CPU Central Processing Unit

DBN Deep Belief Network

DDoS Distributed Denial of Service

DoS Denial of Service

DNN Deep neural network

FN False Negative

FP False Positive

GPU Graphics Processing Unit

GRU Gated recurrent unit

HIDS Host-based Intrusion Detection System

HTTP Hypertext Transfer Protocol

IDS Intrusion Detection System xi

IOT Internet of Things

IP Internet Protocol

LSTM Long short-term memory

MLP MultiLayer Perceptron

ML Machine Learning

x

NIDS Network intrusion detection system

R2L Remote To Local

RBM Restricted Boltzmann Machine

ReLU Rectified linear unit

RF Random forests

RNN Recurrent neural networks

SDN Software-Defined Networking

SIDS Signature-Based Intrusion Detection Systems

SIEM Security Information and Event Management

SMOTE Synthetic Minority Over-sampling Technique

SOM Self-organized maps

STL Self-taught learning

TCP Transmission Control Protocol

TN True Negative

TP True Positive

U2R User To Root

UDP User Datagram Protocol

xi

LIST OF FIGURES

Figure 1.1 IOT Connections Forecast 2020-2030 ... 3

Figure 1.2 Framework of a smart IoT-based city.. 6

Figure 1.3 Taxonomy of IDS systems .. 9

Figure 3.1 Deep Learning Architecture .. 28

Figure 3.2 Deep learning architecture of the proposed models 30

Figure 3.3 MLP Architecture .. 33

Figure 3.4 (A) Simple Neural Network, (B) After Dropout, the Neural Network 34

Figure 3.5 Recurrent Neural Network... 37

Figure 3.6 LSTM Architecture.. 39

Figure 3.7 LSTM input outputs and the corresponding equations for single timestep

.. 39

Figure 4.1 A proposed framework for the detection of attacks 43

Figure 4.2 Binary Classification ... 47

Figure 4.3 MLP architecture. The architecture has a single hidden layer with 5 units

.. 51

Figure 4.4 LSTM Classifier under consideration. The model has a single hidden layer

 with 64 units ... 53

Figure 4.5 Architecture MLP Classifier(A) Binary Classification, (B) Multi-class

 Classification.. 54

Figure 4.6 Architecture LSTM Classifier (A) Binary Classification, (B) Multi-class

 Classification.. 55

Figure 4.7 Matrix of Confusion the Attacks Distribution ... 61

Figure 4.8 Matrix of Confusion for Binary Attacks Distribution 62

Figure 4.9 Confusion Matrix of Multiclass Attacks Distribution 62

Figure 4.10 Confusion Matrix of Multi-Class Classification using MLP Classifier 62

Figure 4.11 Confusion Matrix of Multi-Class Classification using LSTM Classifier 63

Figure 4.12 Confusion Matrix of Binary Classification with MLP Classifier 63

Figure 4.13 Confusion Matrix of Binary Classification with LSTM Classifier 63

Figure 5.1 Distribution of normal and abnormal Attack ... 65

Figure 5.2 Multi-class Classification .. 69

Figure 5.3 (A) Accuracy throughout Epoch, (B) loss throughout Epoch for the MLP

 Model (Binary Classification).. 73

xii

Figure 5.4 (A) Accuracy throughout Epoch, (B) loss throughout Epoch for the LSTM

 Model (Binary Classification) .. 74

Figure 5.5 (A) Accuracy throughout Epoch, (B) loss throughout Epoch for the MLP

 Model ((Multi-class Classification ... 74

Figure 5.6 (A) Accuracy throughout Epoch, (B) loss throughout Epoch for the LSTM

 Model ((Multi-class Classification) ... 74

xiii

LIST OF TABLES

Table 2.1 Summary of existing surveys and papers related work to deep learning 23

Table 4.1 Data before normalization .. 44

Table 4.2 Data after normalization .. 44

Table 4.3 Categorical features transform into numeric values.................................... 45

Table 4.4 Applying one-hot encoding to convert categorical attributes to numerical 46

Table 4.5 Confusion Matrix .. 61

Table 5.1 Examples of KDD CUP 99 Features ... 66

Table 5.2 Distribution of KDD Cup 99 Classes .. 66

Table 5.3 Number of attack labels .. 67

Table 5.4 Attack profiles of DoS, R2L, U2R, Probe Classes 68

Table 5.5 Attack class of DoS, R2L, U2R, Probe by count .. 69

Table 5.6 Schedule of performance of models (LSTM and MLP) splitting the dataset

 75% for training and 25% for testing .. 73

Table 5.7 Schedule of performance of models (LSTM and MLP) splitting the dataset

 80% for training and 20% for testing .. 73

xiv

ABSTRACT

IOT SECURITY BY DETECTION OF THE NETWORK

INTRUSION TRAFFIC USING DL

Nadia Qutaiba Mohamedsaeed ALSABBAGH

Department of Computer Engineering

Master of Science Thesis

Supervisor: Prof. Dr. Hasan Hüseyin BALIK

This thesis "IoT Security by Detection of the Network Intrusion Traffic Using DL,"

describes a technique for detecting and preventing network intrusion assaults on IoT

devices using deep learning (DL) techniques. The thesis indicates a method for reading

network visitor records and identifying patterns of hobby that point to a likely intrusion

using a multilayer perceptron (MLP) and a long-short-term memory (LSTM) neural

network. The author highlights the vulnerability of IoT gadgets to community intrusion

because of their limited processing and reminiscence potential, in addition to the

absence of security mechanisms in numerous IoT devices. The proposed method

operates a deep learning technique to analyse network visitors' records and recognise

suspicious patterns of hobbies to deal with this trouble. Furthermore, via executing

examinations on a dataset of network site visitor records obtained from IoT devices, the

thesis elucidates the efficacy of the suggested approach in figuring out network

intrusion dangers. The results display how nicely the LSTM-based totally technique has

acknowledged several sorts of network intrusion attempts, consisting of denial of

service (DoS) attacks and malware contamination assaults. Overall, the Thesis

highlights the significance of imposing powerful security measures for IoT devices and

demonstrates the capability of DL techniques for detecting and preventing network

intrusion assaults on those devices. The proposed framework can be beneficial for

xv

improving the safety of IoT devices and networks, and for mitigating the risk of cyber-

attacks and breaches.

We will evaluate the performances in terms of training, prediction time, accuracy, and

different simulation outcomes based totally on precision, taking into account, the F1

score, and log loss with the use of the dataset KDDCUP-99.

Keywords: Deep Learning, Intrusion Detection Systems, IoT Attacks, LSTM, MLP,

RNN, Security of the Internet of Things.

__

YILDIZ TECHNICAL UNIVERSITY

GRADUATE SCHOOL OF SCIENCE AND ENGINEERING

xvi

ÖZET

DL KULLANILARAK AĞ İZİNSİZ TRAFİĞİNİN

TESPİTİ İLE IOT GÜVENLİĞİ

Nadia Qutaiba Mohamedsaeed ALSABBAGH

Bilgisayar Mühendisliği Anabilim Dalı

 Yüksek Lisans Tezi

Danışman: Prof. Dr. Hasan Hüseyin BALIK

Bu Tez " DL Kullanılarak Ağ İzinsiz Trafiğinin Tespiti ile IOT Güvenliği," derin

öğrenme (DL) tekniklerini kullanarak IoT aygıtlarına yönelik ağa izinsiz giriş

saldırılarını tespit etmeye ve önlemeye yönelik bir tekniği açıklar. Tez, ağ

ziyaretçilerinin kayıtlarını okumak ve çok katmanlı bir algılayıcgı (MLP) ve Uzun Kısa

Süreli Bellek (LSTM) sinir ağı kullanarak olası bir izinsiz girişe işaret eden hobi

kalıplarını belirlemek için bir yöntem göstermektedir. Yazar, çok sayıda IoT cihazında

güvenlik mekanizmalarının bulunmamasına ek olarak, sınırlı işleme ve hatırlama

potansiyelleri nedeniyle IoT cihazlarının ağa izinsiz giriş denemelerine karşı

savunmasızlığını vurguluyor. Önerilen yöntem, bu sorunla başa çıkmak için ağ

ziyaretçi kayıtlarını analiz etmek ve şüpheli hobi kalıplarını tanımak için derin

öğrenmeye dayalı teknik kullanıyor. Ayrıca, IoT cihazlarından elde edilen ağ sitesi

ziyaretçi kayıtlarından oluşan bir veri seti üzerinde incelemeler yapılarak tez, önerilen

yaklaşımın ağa izinsiz giriş tehlikelerini belirlemedeki etkinliğini açıklamaktadır.

Sonuçlar, LSTM tabanlı tamamen tekniğin, hizmet reddi (DoS) saldırıları ve kötü

amaçlı yazılım bulaşma saldırıları da dahil olmak üzere çeşitli türde ağa izinsiz giriş

denemelerini ne kadar başarılı bir şekilde kabul ettiğini gösteriyor. Genel olarak Tez,

Nesnelerin İnterneti aygıtları için güçlü güvenlik önlemlerinin uygulanmasının önemini

vurgulamakta ve bu aygıtlara yönelik ağa izinsiz giriş saldırılarını tespit etmek ve

xvii

önlemek için DL tekniklerinin yeteneğini göstermektedir. Önerilen çerçeve, IoT

cihazlarının ve ağlarının güvenliğini artırmak ve siber saldırı ve ihlal riskini azaltmak

için faydalı olabilir.

Performansları eğitim, tahmin süresi, doğruluk ve farklı simülasyon sonuçları açısından

tamamen hassasiyete dayalı olarak değerlendireceğiz, F1 puanını dikkate alacağız ve

KDDCUP-99 veri kümesinin kullanımındaki günlük kaybını değerlendireceğiz.

Anahtar Kelimeler: Derin Öğrenme, Saldırı Tespit Sistemleri, IoT Saldırıları, LSTM,

MLP, RNN, Nesnelerin İnternetinin Güvenliği.

YILDIZ TEKNİK ÜNİVERSİTESİ

FEN BİLİMLERİ ENSTİTÜSÜ

1

1

INTRODUCTION

In the recent years of information technology (IT), the complexity of numerous

information devices has increased, connected concurrently, and persists to produce and

save significant digital data .

Accordingly, this introduces challenges to individuals and corporations. Given these

points, the approaches to attack detection should also be more competent and practical

than before to combat attack hackers, which are also developing persistently. For detecting

abnormal behaviours (attacks), the current technologies commonly employ detection

methods based on event examination with preset rules. So, insufficient data regarding real

attacks or inaccurate identification of attacks in the security domain; result in financial

losses and the limited utilisation of such systems. Consequently, their primary function is

the automated gathering and analysis of varied security event data for risk assessment. To

ensure essential computing capacity, automatic intrusion detection systems must leverage

cloud computing resources and acquire insights into attack methodologies for adaptive

responses in the security industry. This thesis aimed to determine and prevent malicious

activities targeting Internet of Things devices. DL algorithms analyse network traffic

patterns to detect anomalies and classify them as intrusions, allowing timely responses to

protect sensitive data and support system integrity.

1.1 Literature Review

Networks and their record-protective capacities have stepped forward in a manifold

manner to make cutting-edge strides in communication technologies. Still, this

improvement has brought forth a group of the latest and most insidious threats. A lot of

studies on network protection can correctly discover attacks amidst this sea of rising

dangers that target vulnerabilities specific to IoT devices. The range of related gadgets

keeps skyrocketing, fueling online traffic further compounded by the use of our insatiable

desire for all matters internet-driven. Because of this, state-of-the-art IoT packages can

now actualize their information flow from giving up to surrender without relying on

archaic techniques [1]. The ever-developing quantity makes it nearly impossible to hit

upon assaults and avoid them; therefore, there is a need for DL techniques in particular

2

tailored within the course of IDS through deep learning knowledge of architectures. Here,

we talk approximately using DL fashions as a revolutionary technique toward hazard

detection within the Internet of Things (IoT), and figuring out malicious facts in its early

stages is a specially tough challenge in which these state-of-the-art models could function

as surrogate brains capable of encapsulating real life functionalities, all completed through

the synthetic technique.

The development of the Internet of Things (IoT) is considered one of the most crucial

advances in technology honestly, which notably impacts all spheres of human life,

depending on one-of-a-kind use times. IoT tool interconnection that might be leveraged

for information series.

In addition to quick developments in the actions with the world spherical us, the IoT is

not on my own in this difference: there have been several different top-notch technical

advances in today's years that have had huge influences on each society as well as

economies.

The proliferation of smartphones and other cellular gadgets has extensively revolutionized

the way humans speak, access information, and behave in their business enterprise

dealings. The emergence of generation using renewable power resources adjusts how we

produce and use power, this technique is a new wave of innovation in the power; business

enterprise. There are some sectors like production, healthcare, and transportation that can

introduce new packages through device learning and synthetic intelligence; others consist

of functions in diverse industries because they are capable of discovering extra

competencies from those technologies.

Nonetheless, the impact of the Internet of Things on exceptional aspects of our everyday

life is considerable, and as such, the development in relationships between human beings

and vehicles or houses and the ways we care for our health is quickly significantly altered

by technology, a phenomenon in which IoT takes the middle ground. The connection of

normal gadgets to the net that permits them to interact and talk with everyone has created

a new field of revolutionary opportunities; a generation in which creativity reigns. But

those possibilities additionally pose risks such as information protection, privacy, and

safety trouble when extra devices are connected to the internet, and greater instances of

information breaches and cyber assaults are mentioned.

3

This underscores the need for IoT development with strict adherence to fine practices in

conjunction with robust security mechanisms.

While the competition over whether the Internet of Things stands as history's singular best

technical soar remains an open debate, what can't be contested is that this behemoth

quarter, one that continues to grow at a breakneck pace with innovation holds potential

that might redefine how we live our lives.

The majority of groups which include manufacturing, healthcare, and retail at the moment

are using IoT sensors for monitoring purchases, remotely tracking sufferers, or even

running completely self-reliant warehouses. But many greater packages have come about

these days than ever earlier; therefore, there were roughly 9.8 billion IoT gadgets

operational in use in 2020, a Figure that had risen to around 13.1 billion in 2022, with a

forecast indicating that globally there might be 29.4 billion devices in use through 2030

[2].

Figure 1.1 IOT Connections Forecast 2020-2030[2]

The Internet of Things (IoT) is generally understood to be a way that entails proper

strategies that link through servers, sensors, and diverse software. The town structure

proven in Figure 1.2 has three basic layers, which might be labeled as the fog layer, the

cloud layer, and the terminal layer respectively. The records obtained from the Internet of

Things gadgets are saved in an environment surroundings called cloud computing (CC),

which functions with stronger CPUs and sufficient reminiscence. The rapid increase in

the cloud layer may be attributed to the current developments in the Internet of Things

4

technology. A conceivable clarification of such difficulties became integrated into the

development of the fog-to-matters system.

 In the fog layer, there may be a possibility that gadgets will come across some better

statistics values on the way to being successfully moved to the cloud layer. This results in

a reduction in the quantity of electricity wasted, the quantity of community site visitors,

and the use of bandwidth, together with the demanding situations related to information

storage and transmission. Furthermore, it strives to expedite the estimated technique as it

processes its very last stages. Enabling a prompt response to urban use with the Internet

of Things. Implementing threat detection within the fog-to-things layer has advantages. If

those network assaults are detected in the fog layer, either the net service provider or the

network administrator can also put into effect preventive movements that would probably

reduce the quantity of harm caused. A further advantage of this approach is that it does

not keep human beings from going approximately as far in their daily lives as they usually

might.

The model observes the quantity of internet traffic produced through every fog-to-subjects

node. Identifying network assaults at the fog-to-matters connections is more efficient than

doing so on the cloud layer due to the similarity between fog-to-things connections and

IoT devices. This may be completed with the aid of comparing the site visitors among the

two layers. Threats may be quickly communicated to the network controllers of IoT

devices, allowing the controllers to assess and improve their security measures as vital.

It is important to conduct behaviour research on methods that can pick out this type of

network visitor before attempting to develop ”intrusion detection and prevention

structures.” Through the software of gadget learning (ML) techniques, intrusion detection

and prevention structures are able to discover malicious site visitors. “Using algorithms

to research statistics and make predictions primarily based on that data is the goal of

machine learning (ML), which is a subset of synthetic intelligence (AI).” [3]. “AI

algorithms may be applied within the retail, healthcare, and economic sectors,

respectively, to foresee customer shopping for traits, affected person fitness issues, and

financial institution fraud” [4]. ML has a huge variety of applications, a number of which

include those three industries. As a result of the big annual increase in the wide variety of

cyberattacks that can be seen on an annual basis, ML processes are being employed to

help address the expanding risks of cyberattacks.

5

Within the area of cybersecurity,” DL is positioned to be used for a variety of reasons,

one of which is network chance evaluation” [5], which refers back to the procedure of

figuring out potential threats to a community. Considering that DL is capable of

monitoring incoming and outgoing traffic to perceive traffic that may be suspicious, it

may be beneficial for this cause [6]. The research discipline of intrusion detection is

widely known and wherein work is being finished. Intrusion detection systems (IDS) can

achieve the blessings of deep learning (DL) by becoming more self-sufficient and by

appropriately sounding the alert in the event that a probable intrusion is being investigated

[7].

To achieve this aim, we're tasked with developing the most superior “deep learning (DL)

algorithms” viable to detect assaults on Internet of Things (IoT) networks. These

algorithms will employ a contemporary dataset in addition to binary and multi-class

category testing.

Machine learning (ML), a subset of the synthetic intelligence era, will end the evaluation

and deliver video pictures to people so that they will reply swiftly to concerns and ensure

the citizens' protection. ML is an acronym for "machine studying."

Attack detection may be classified as either largely signature-based or predominantly

anomaly-based, depending on which technique is used more regularly. In spite of the

reality that the latter analyses the behaviour of everyday site visitors, the former makes

use of a typically primarily based approach that will check the incoming site visitors for

the many kinds of assaults and crimes that are stored inside the database.

Overall, this highlights the growing importance of security for Internet of Things (IoT)

gadgets that are increasingly being used in vital packages including healthcare,

transportation, and business control structures. The authors should be aware that using IoT

devices introduces new safety-demanding situations, as those gadgets are regularly aid-

restrained and lack the safety features observed in conventional computing devices.

So one of the most important safety risks for IoT devices is community intrusion attacks,

which may additionally undermine the integrity, confidentiality, and availability of IoT

networks and data. The thesis indicates using a DL-based method to perceive and prevent

network intrusion attacks on IoT devices. The recommended methodology employs a

Long Short-Term Memory (LSTM) and Multi-Layer Perceptron (MLP) neural

6

community to scrutinize network traffic records and come across discernible styles of

conduct that represent a capability intrusion.

The authors say that DL techniques have shown superb promise in the extensive variety

of packages, along with picture recognition, language processing, and speech recognition

[8]. However, the application of DL to the sector of network security remains particularly

new, and there may be a need for further research and development in this area.

The Thesis ambitions to “address this gap with the aid of offering a DL-primarily based

technique for detecting community intrusion assaults on IoT gadgets“ [9]. The authors

describe experiments performed on a dataset of network visitor statistics from IoT gadgets

and display the effectiveness of the proposed approach in detecting numerous sorts of

community intrusion attacks.

Overall, they highlight the need for effective security measures for IoT devices and the

ability of DL strategies to improve the security of these devices. The thesis contributes to

the developing body of research on DL-primarily-based strategies for network safety and

offers insights into the demanding situations and possibilities of applying DL to this field.

Figure 1.2 Framework of a smart IoT-based city [10]

A famous area of research is deep learning, a subfield of systems that gain knowledge

with fantastic performance. IDSs with deep studying can attain good detection stages

when deep learning fashions can generalize nicely enough and have enough training

information to locate novel and variational attacks [11]. They are also easy to develop and

build because they hardly ever want area expertise.

7

“Deep learning methods outperform ordinary machine learning approaches in their ability

to successfully handle enormous volumes of data. Deep learning algorithms are

particularly pragmatic as they function from start to finish and contain the capacity to

autonomously collect feature representations from raw data” [12]. The "Data" is the key

prerequisite for using deep learning to tackle time series issues. This data may be time-

series data with one or more variables, and it can also be time-series data with just one

variable. So the taxonomy of IDS Systems [13] is like in Figure1.3:

• Network-based IDS (NIDS)

- Perimeter NIDS: used to monitor inbound and outgoing traffic at the network's edge.

- Internal NIDS: deployed within the internal network to monitor traffic between

different segments or subnets.

- Virtual NIDS: deployed in virtualized environments to monitor virtual machines

and containers.

• Host-based IDS (HIDS)

- Server HIDS: installed on servers to screen activities at the host, together with file

gadget modifications, login tries, and method behaviours.

- Endpoint HIDS: installed on endpoints, which include desktops or laptops, to

monitor activities on the host and discover capacity attacks or malicious activities.

- Cloud HIDS: deployed in cloud environments to monitor cloud resources, digital

machines, or boxes for security threats.

• Hybrid IDS

- Network + Host IDS: a mixed approach for thorough chance detection that makes

use of both host- and network-based total techniques.

- Cloud + Network IDS: an incorporated method for keeping a watch on community

traffic and cloud sources that mixes both cloud- and community-primarily based

processes.

• Signature-based IDS

- Network Signature-based totally IDS: detects and alerts users to doubtlessly risky

hobbies in community facts through the use of preset signatures or styles of

recognized assaults.

8

- Host Signature-based IDS: this system detects and notifies users of dangerous

hobbies going on on hosts primarily based on pre-established signatures or known

attack styles.

• Anomaly-based IDS

- Network Anomaly-based IDS: monitors network site visitors for deviations from

mounted baselines or regular styles to locate anomalies that can indicate potential

attacks.

- Host Anomaly-based IDS: monitors host activities for abnormal behaviours that

deviate from established baselines or normal patterns to detect potential attacks.

• Behavior-based IDS

- Network Connection Behavior-based IDS: the system monitors network connection

traffic to detect patterns of activity that might suggest malicious actions, such as

several unsuccessful login attempts, abnormal data transfers, or suspicious network

behaviours.

- Host Behavior-based IDS: monitors host activities for styles of conduct that could

indicate malicious moves, together with privilege escalation, unauthorized access

attempts, or strange system behaviours.

• Cloud-based IDS

- Infrastructure-level Cloud IDS: monitors the infrastructure and resources in cloud

environments, consisting of virtual networks, storage, and databases, for security

threats.

- Application-level Cloud IDS: monitors cloud-primarily based programs, which

include internet applications or APIs, for potential attacks or vulnerabilities.

• Distributed IDS

- Geographical Distributed IDS: deployed across multiple geographical locations or

sites to monitor and detect security threats in distributed or remote networks.

- Segment-based Distributed IDS: deployed in different network segments or subnets

to monitor traffic within each segment and detect potential attacks or suspicious

activities.

• Host Intrusion Prevention System (HIPS)

9

- Server HIPS: provides proactive protection on servers employing actively stopping

and blocking malicious activities, along with network connections, system

executions, or record device modifications.

- Endpoint HIPS: Provides proactive protection on endpoints via actively preventing

and blocking off malicious activities, which include unauthorized get-right-of-entry

attacks, malware executions, or device adjustments.

- Cloud HIPS: provides proactive defence in cloud environments by actively stopping

and blocking malicious activities in cloud assets, virtual machines, or boxes.

The shape of the thesis is as indicated below. In the subsequent part (II), we can articulate

the related works. In Section III, we move into detail, describing the methodology of the

algorithms. In this component, the evaluation dataset, in addition to the various sorts of

assaults and their traits, is supplied. In Section V, the results of the study and critiques of

their overall performance are provided. In the concluding element, "Section VI," we

present a summary of the thesis and a top-level view of our objectives for future research.

Figure 1.3 Taxonomy of IDS systems

10

1.2 Objectives of Study

In order to understand future cyberattacks on IoT device networks and protect against

them, we should check out IoT security via the use of DL-based strategies in community

intrusion traffic detection. However, it needs to be prioritized for steady IoT gadgets

because the quantity of IoT devices is growing and they're broadly used in lots of programs

that make such protection susceptible: to unauthorized access and record breaches.

Improving the effectiveness and precision of intrusion detection in IoT networks can be

better carried out through the employment of deep learning algorithms. The fundamental

cause of the project is to create deep knowledge of models that take a look at network

traffic statistics in detail, identifying styles and anomalies that might indicate future

attacks, through which these fashions are to be taught with large datasets on network

traffic to make certain excessive ranges of accuracy and reliability.

The work aims to supply pragmatic and talented strategies for the use of deep learning

primarily based on network intrusion website traffic detection for IoT networks. This will

result in improved safety of IoT networks and gadgets from cyber threats.

A development in the precision and effectiveness of intrusion detection in Internet of

Things (IoT) networks may be accomplished by means of deep learning algorithms. The

important purpose of the study is to create deep reading frameworks that surveil network

vacationers' statistics on an ongoing basis in an effort to identify styles and anomalies

indicating capability destiny assaults. To ensure high accuracy and reliability, those

fashions might be professional on massive datasets comprising network traffic.

This takes a look at objectives offering pragmatic techniques for deep learning based

totally on community intrusion visitor detection that would only result from carried-out

paintings of interior IoT networks; such efforts may want to make substantial

contributions to strengthening cybersecurity on IoT networks and gadgets .

1.3 Benefit of Study

Studying IoT protection and the usage of deep learning (DL)-primarily based on network

intrusion visitor detection has several advantages, consisting of:

• More security for IoT devices and networks: When numerous IoT devices are

increasingly being applied for diverse functions, it is crucial to establish their

11

security to block unauthorized access and information breaches. The improvement

of the safety of Internet of Things networks and gadgets may be facilitated by

employing the development of short algorithms for deep learning primarily based

network intrusion traffic detection, which would defend these systems from

intruders.

• Network and IoT tool safety needs to be enhanced. As the variety of IoT devices is

used for an increasing number of distinct purposes, it's vital to guarantee their

protection to prevent unauthorized access and data leakage. Creating brief

algorithms for DL-based community intrusion traffic detection may be one way

through which researchers can also toughen the safety of Internet of Things

networks and devices and, as a consequence, shield these structures from attackers.

• Improved threat intelligence: Deep learning research on IoT security may provide a

good understanding of the kinds of attacks that are most often used to exploit

weaknesses in IoT networks and devices. This may be used by security experts to

create threat information that is more accurate and to design preventative measures

against possible intrusions.

• Scalability: Scalability: When the quantity of IoT devices and networks goes up, the

regular intrusion detection systems will struggle to handle the large volume of

network data. It is feasible for researchers to detect network intrusions in IoT

networks in more pragmatic and scalable ways by utilizing DL algorithms.

1.4 Proposed Study

The DL-IDS, as defined within the thesis "IOT Security by using Detection Of The

Network Intrusion Traffic Using DL," employs separate deep learning methods, mainly

lengthy quick-time period memory (LSTM) and multi-layer perceptions (MLPs), to

precisely discover and categorize cyber-assaults geared toward IoT networks. The models

are evaluated using of the KDDCUP dataset to check their ability to identify diverse forms

of attacks and their average effectiveness. The findings indicate that the proposed

disbursed system may be very powerful in detecting different types of cyberattacks, with

an accuracy rate of up to 99.99% across a variety of configurations. The cautioned

architecture for detecting assaults using the allotted deep learning has four fundamental

steps: information treatment and pre-processing, education of the deep studying version,

12

testing of the deep learning of the model, and detection of attacks. The technique

incorporates many stages: statistics preprocessing and treatment, education and trying out

deep learning to know the model, deploying a distributed framework, and the section on

detecting and classifying assaults. Given the confined efficacy of conventional centralized

intrusion detection systems (IDSs) in thwarting superior and previously unknown (zero-

day) assaults, it's highly encouraged to install an allotted solution at the network perimeter

to hit upon and mitigate cyber-attacks.

The suggested technique tackles the problem by using deep learning models specifically

designed for supervised learning. These models excel at handling highly interconnected

characteristics and can effectively solve the given issue.

1.5 Hypothesis

Using deep learning models to identify network intrusion traffic in IoT systems will

increase security by efficiently detecting and mitigating prospective threats, enabling a

proactive and flexible defensive mechanism.

Clarification:

The Internet of Things (IoT) networks' intrinsic complexity IoT networks, which consist

of a whole lot of related devices with exceptional functionality, are by way of their very

nature diverse and complicated. The continuously evolving characteristics of Internet of

Things (IoT) eventualities may additionally offer problems for traditional intrusion

detection structures to conform to them.

The growing complexity of infiltration procedures presents trouble for traditional rule-

based intrusion detection systems, which can also struggle to keep up with rising attack

styles. Deep learning fashions, appreciably neural networks, have the potential to

autonomously acquire complex patterns and attributes from network visitor records.

The feature mastering capability of deep learning is characterised by its computerized

extraction of hierarchical representations and functions from raw information. Through

the analysis of ancient community traffic data, deep learning algorithms may probably

discover intrusions effectively by finding minute patterns that point to both felony and

criminal conduct. This approach provides an extra comprehensive and complex means of

intrusion detection.

13

Deep learning systems can adapt to evolving hazard situations without having humans

enter on an everyday foundation. Adaptability is essential in the Internet of Things

environments where gadgets and conversation styles are converging rapidly.

Deep learning fashions have the capability to offer actual-time detection of anomalous

patterns in community records while being appropriately deployed and tuned. As a result,

the machine can react to attacks extra rapidly, decreasing its vulnerability and boosting its

average capability to recover from disruptions.

Deep learning for intrusion detection may also result in fewer false positives than

conventional techniques. More correct alarms result from deep learning fashions'

capability to differentiate between acceptable-sized safety concerns and standard network

pastime versions.

14

2

RELATED WORKS

2.1 Intrusion Detection Research

 Multiple studies have recorded the usage of machine learning (ML) in many domain

names, along with object identification, model recognition, word processing, and photo

processing. Deep Learning (DL) techniques are frequently utilized in protection-targeted

studies [14]. In their work, the authors analyze the rise in information volume and the

emergence of the "Smart City Internet of Things" as described in reference [15]. The

authors of [16] elucidate the process of constructing CC and underscore the importance of

big records within the formation of intelligent urban regions. He devised a way targeted

at "large information" for the smart town. This approach tackles the difficulties of actual-

time selection-making in clever towns [17]. It outlines numerous traits and components of

smart towns so one can boom the first-class quality of life for people's lives. The authors

of [18] provided a platform structure geared toward safeguarding smart towns from

cyberattacks. To distinguish attackers based on the information they have acquired, the

structure deploys a unique deep learning algorithm.

To enhance information safety, the authors of [19] used MLP and RF technology to

discover the vulnerable factors of two widely used RPL-OF protocols. They additionally

identified aggregate assaults on these protocols, together with rank and version, rank and

blackhole, and decreased path. Concurrent attack. Consequently, they created a clean

dataset for the Internet of Things (IoT) that relied on strength and network traits.

Subsequently, these facts changed into implemented as an issue in the RPL Intrusion

Detection System/Intrusion Prevention System (IDS/IPS) answer. Based on the idea of

DL, the authors in [20] " They set up a " network intrusion detection machine" on the Fog

node to detect attacks and identify them without previous expertise, The authors in [21]

evolved “a novel method that mixes isolation forests, One Class Support Vector Machine

(OCSVM), and an active learning mechanism”. A quick preprocessing or filtering method

became paired with a variational auto-encoder that employed reconstruction possibilities

via the authors of [22].

15

The authors of [23] used the ping of death technique to provoke a Distributed Denial of

Service (DDoS) attack. This assault was then detected through the use of the RF set of

rules and the WEKA tool, achieving a classification accuracy of 99.76%.

Several algorithms of machine learning [24,25] like Naive Bayes (NB), [26] ANN, and

[27] fuzzy classification, SVM had been applied.

[28,29] Despite the fact that conventional machine learning methods have been frequently

implemented for the detection of network attacks, these methods nevertheless require a

great deal of preprocessing. These kinds of algorithms call for the use of attribute

engineering and presume the supply of hand-crafted attributes [30].

 However, the short development of technology has resulted in a rise in the amount of

daily statistics data available to companies. As a consequence, the application of deep

learning in trendy device studies involves acceptable human engagement in the

compilation of data, this will not be ideal for handling actual-world situations [30,31]

Additionally, those strategies are not a hit, but their drawback is a low degree of detection

accuracy [31]. Recently, deep learning has gained popularity and appears to provide an

answer to practical challenges within the real world. Because of its unheard-of capacity

to automatically detect characteristics and correlations in large datasets [31]. Studies of

deep learning algorithms for anomalous behaviour-based intrusion detection were

undertaken by way of Aldweesh et al. [32]. This entails the classification of awesome IDS

and the route of future study. Also, discover IDS from the perspective of deep learning

strategies.

In the study undertaken by Vinayakumar and his colleagues, they advised the use of a

completely practical hybrid DNN platform. They dubbed it Scale-Hybrid-IDS-AlertNet.5

" This version is hired to effectively surveil community traffic in real-time and offer early

caution of risks [33]. It was built on a distributed deep learning model, which the authors

verified on many different data sets, such as KDD'99 and NSL-KDD. On NSL-KDD, the

optimal F-measure for multiclass classification was 76.5%, while the optimal F-measure

for binary classification was 80.7% [33].

Tang et al. “came up with the idea of using a DNN model to spot irregularities in software-

defined networking contexts. In practice, a straightforward DNN consisting of an input

layer, three hidden layers, and an output layer was utilized”[34]. The NSL-KDD data set

16

was utilized in the training that was carried out. “The model performed an accuracy value

of 75.75% when applied to the binary classification problem”[34].

Yin and colleagues presented a technique that uses recurrent neural networks (RNNs) to

identify intrusions [35]. When dealing with data that depends on time, RNNs perform very

well. The model included both forward and backward propagation phases. Forward

propagation is used to calculate the output values, while backpropagation, which passes

the collected residuals, is used to maintain the weight current. They used SoftMax for the

classification function and Sigmoid for the activation function. The results of the studies

carried out using the NSL-KDD data set indicated that the accuracy values for binary and

multiclass classification were 83.28% and 81.29%, respectively.

Deep learning and extra conventional device gaining knowledge of algorithms have been

blended in the take a look at by using Shone et al.[36]. ”Unsupervised feature learning

was done with the assistance of a nonsymmetric deep autoencoder (NDAE). Following

that, an RF was applied for the project of classification. Two NDAEs have been stacked

on top of one another, and each NDAE contained three discrete layers that were hidden

from view”. The number of neurons and the number of capabilities are proportionally

disbursed throughout every hidden layer. In order to evaluate the model, the KDD99

record set was utilized. The findings demonstrated a level of accuracy for the 5-class

classification of 97.85 %.

Soman et al. [37] conducted studies to assess the performance of a number of one-of-a-

kind deep learning algorithms inside the assignment of classifying the KDD'99

information set.

Dong and Wang carried out a “literary and experimental comparison between the utility

of conventional NIDS techniques and deep learning techniques” [38]. They observed that

deep studying became more effective than conventional strategies. The evaluation they

made targeted the software of various techniques. The authors reached the conclusion that

“the strategies that had been primarily based on deep learning presented improved

detection accuracy throughout a spectrum of pattern sizes and various forms of traffic

anomalies” [38]. This end was reached after the authors performed research.

The authors also “demonstrated that troubles associated with imbalanced datasets may be

triumphed over by the use of oversampling, for which they used the Synthetic Minority

17

Oversampling Technique (SMOTE).” In addition, the authors demonstrated that

oversampling may be used to triumph over issues related to imbalanced datasets. In

addition, the authors confirmed that imbalanced datasets can be conquered by way of

using oversampling as a technique of data correction.

In their presentation, Zhao et al. [39] furnished a survey of “the current condition of the

work concerning packages of deep learning in gadget vigour monitoring.” They conducted

a test wherein they as compared four commonplace deep learning methods to conventional

system learning methods. These techniques were “auto-encoders, Restricted Boltzmann

Machines (RBM), Convolutional Neural Network (CNN), and Recurrent Neural Network

(RNN)”. The authors came to the conclusion, primarily based on their research, that deep

learning techniques offer better accuracy than traditional strategies.

Deep4MalDroid is the name of the economic Android malware detection framework, this

is defined within the paintings with the aid of Hou and colleagues [40]. Their method

makes use of stacked auto-encoders, with the realization that three layers offer the best

level of accuracy. It has been proven via the use of 10-fold pass validation that, in contrast

to deep learning, their method gives advanced detection performance.

You and others [41] advise growing a device that could perform an automated security

audit on brief messages (SMS). The RNN model serves as the foundation for his or her

method. The authors asserted that their assessments produced an accuracy rate of 92.7%,

which represented an improvement over formerly applied classification techniques

(inclusive of SVM and Naive Bayes).

Throughout the route of our investigation into the pertinent literature, we came across a

number of distinct deep learning knowledge strategies that were mainly proposed for

NIDS.

Alrawashdeh and Purdy [42] advocated using an RBM that had one hidden layer on the

way to “perform unsupervised characteristic reduction”. This is carried out with the

intention of enhancing model accuracy.

The weights are then transferred to a specific RBM, so one can generate a DBN. The

weights that have been pre-educated are then fed right into a first-class-tuning layer, which

is made from a Logistic Regression classifier that has been skilled with 10 epochs and a

18

multi-magnificence smooth-max. Using the dataset from the KDD Cup '99, the proposed

answer was analysed and evaluated. The authors said that their detection rate turned to

97.90%, at the same time as the rate of fake negatives turned to only 2.47%. This is an

improvement over the consequences that have been claimed by authors of other papers

that were very similar to this one.

The goal of the studies finished by Kim and co-workers [43] changed to zero in on

advanced continual threats. They suggest a Deep Neural Network (DNN) with 100 hidden

layers combined with the Rectified Linear Unit activation function and the ADAM

optimizer. This community might be used to make predictions. Their approach was

evaluated by way of making use of the KDD information set, and it was applied on a GPU

by means of making use of TensorFlow. The authors asserted that their fashions had an

accuracy price of as much as 99% in common, and they concluded that RNN and Long

Short-Term Memory (LSTM) models can be essential for the development of future

defences.

Javaid et al. Came up with “the idea for a self-taught gaining knowledge of (STL) deep

learning model for the purpose of detecting network intrusions” [44]. “The first part of the

version turned into unsupervised feature learning, which concerned using a sparse

autoencoder to obtain a function representation from a massive unlabeled record set. This

part of the model got here first inside the version. The 2nd factor became a synthetic neural

network classifier that made use of the SoftMax regression type” [44]. When the version

was carried out to the NSL-KDD records set, it achieved accuracy values of 88.39% for

the two-class category and 79.10% for the five-class classification, respectively.

Potluri and Diedrich [45] recommend a method that uses 41 functions, and their DNN

consists of three hidden layers, broken up among two auto-encoders and one soft-max.

The findings that were acquired have been contradictory; however, those who

concentrated on a smaller, wider variety of classes performed with a higher degree of

accuracy. The authors explained this result by mentioning that positive classes lacked

satisfactory training data.

A technique to research models of normal network flows in an unsupervised way was

proposed by Cordero et al.[46]. They utilise the RNN, vehicle-encoder, and dropout

concepts, which can be related to deep learning. It isn't completely disclosed whether or

19

now not their proposed approach has been correctly evaluated, but the accuracy was

entirely high.

Also, Tran Nguyen et al. [47] followed the NDAE model, assessed its efficacy with the

use of the KDD Cup '99 and the NSL-KDD datasets, and it obtained a high effect of

achievement in terms of accuracy, precision, and recall with minimal training time. The

contrast of stacked NDAE models with traditional DBN techniques. The version has been

proven to boost accuracy by as much as 5% and limit learning time by as much as 98.81%.

It became proposed with the aid of Kang and Kang [48] to apply an unsupervised DBN to

teach parameters to initialize the DNN, which resulted in progressed type outcomes (the

precise details of the technique are uncertain). Their evaluation exhibits an improvement

in overall performance in terms of the range of incorrect classifications. A whole

taxonomy and survey on extraordinary NIDS processes that make use of deep and shallow

learning were produced with the aid of Hodo et al. [49]. In addition to this, they've

compiled a number of the most pertinent findings from the aforementioned works.

Additionally, there are extra works that are pertinent, such as the DDoS detection gadget

that was proposed by Niyaz et al.[50]. They advise an allotted denial of service (DDoS)

detection system for a software-defined network community (SDN). This is based totally

on deep learning. The evaluation is done on the usage of traffic paths that have been in

particular generated. The authors assert that they had been a hit in attaining an accuracy

of a binary class of 99.82% and an accuracy of 8-class classification of 95.65%.

Wang et al. [51] present a technique for identifying malicious JavaScript in a laptop

program. Their approach uses a 3-layer SdA coupled with linear regression. When

compared to other classifier strategies, its evaluation discovered that it had the maximum

increased true positive rate at the same time as the second satisfactory false positive rate.

Lee et al. [52] propose the use of deep learning knowledge as a technique for fault

monitoring in the production of semiconductors. They provide an unsupervised learning

answer by employing a Stacked de-noising auto-encoder (SdA) approach. A contrast with

traditional techniques has confirmed that the method increased accuracy by means of “up

to 14% throughout a lot of unique use cases.” In numerous one-of-a-kind use instances.

They also came to the conclusion that the SdAs with four layers produced the most

exceptional outcomes among those that had been analysed (one to four layers).

20

A Convolutional Neural Network (CNN) is used at the side of Long Short Term Memory

(LSTM) to extract precise characteristic representations from statistics, after which they

are classified. The suggested approach employs a deep learning model to pick out and

classify threats in the IoT. The experimental evaluation used a dataset received from

twenty Raspberry Pi-infected IoT devices. The empirical analysis achieved a 96%

accuracy rate for assault detection. The proposed technique surpasses other formerly

advised deep learning-primarily based assault detection strategies [53].

Alom et al. [54] “Create the primary Intrusion Detection System (IDS) through the use of

Dynamic Bayesian Networks (DBN). The solution is evaluated by trying it out on the

NSL-KDD dataset, which is normalized by the use of a numerical encoding method.

During the classification section, the gadget achieves an accuracy of 97.5%, which is

appreciably higher than the 40% accuracy of the training facts within the dataset.”

Omar M. et al. [55] carried out "deep learning techniques to increase deep neural networks

(DNN) for intrusion detection systems. They proceeded with the version on the NSLKDD

dataset. Of the 41 on-hand features within the NSL-KDD dataset, they best implemented

37 critical characteristics. This selection was primarily based on the method's potential to

supply high levels of accuracy, recall, and precision at the same time as simultaneously

lowering the training time necessary. The version gave correct consequences to each of

the validation and check units. The values for F1 in both examples are 98.209%, and

98.426% respectively. 95% accuracy for all kinds of attacks.

Singhania and his colleagues [56] compared three advanced deep learning frameworks,

namely Theano, TensorFlow, and Fast.Ai, in terms of their capacity to identify and

categorize unique intrusions. They used a recently released dataset from 2018. Based on

the findings, it was continuously noticed that speedy. Fast.AI carried out better than the

other frameworks in all of the experiments, accomplishing accuracy results of up to

98.45% with extremely low charges of fake positives and false negatives, each much less

than 1%. Moreover. Has attained an F1 rating of 0.99.

Wang et al. [57] chose “the MLP model for assessment. They use the DDoS attack

detection preprocessed via select optimal features that perform the finest performance”.

Jullian et al. [58] used the DL-IDS system which employs DL models, especially the feed-

ahead neural network (FFNN) and lengthy short-term memory (LSTM), to discover and

21

categorize cyber-attacks in IoT networks. “The models are assessed using two distinct

datasets, especially BoT-IoT and, NSL-KDD, to measure their implementation and

capability to locate diverse varieties of attacks” [58]. The outcomes imply that the

counseled disbursed system could be very efficient in identifying various styles of cyber-

attacks, with an accuracy price of as much as 99.95% in unique configurations [58].

Otoum et al.[59] counseled techniques for “detecting attacks through the use of allotted

deep learning knowledge, which includes four levels: data preprocessing and treatment,

training and testing of deep learning models, deployment of the distributed framework,

and detection and categorization of assaults” [59]. The architecture necessitates a

decentralized approach at “the periphery for figuring out cyber-attacks, as conventional

centralized Intrusion Detection Systems (IDSs) have shown to be insufficient in thwarting

new and unknown (zero-day) attacks. The proposed system tackles this trouble by using

deep learning methods that are specifically designed for supervised learning knowledge

of and exhibit great overall performance when carried out to which highly correlated

information” [59].

Another paper titled "Intrusion Detection Usage of Network Traffic Profiling and

Machine Learning for IoT" proposes that “a dynamic and proactive intrusion detection

system is carried out to profile and display all networked devices for the motive of

detecting any efforts to tamper with IoT gadgets, as well as figuring out uncommon

network transactions” [60]. The proposed solution utilizes network profiling and machine

learning to secure IoT against Cyberattacks. Raw traffic is passed directly to the device

learning classifier for examination and identification of possible attacks. The proposed

“anomaly detection device grants promising effects with a basic accuracy of 98.35% and

0.98% of fake-fantastic alarms” [60].

This method frames the mission of identifying assaults as a piece of anomaly detection.

The cause for that is that assaults typically appear very infrequently; however, after they

do, their signature or, in particular, the distribution of the records is extensively one-of-a-

kind from that in a state of affairs in which operations are normal. We can decide whether

or not the incoming records have an enormously unique signature through the use of this

approach.

22

As seen in Table 2.1, the consequences of our assessment of the pertinent literature have

revealed that, despite the fact that high detection accuracies are currently being performed,

there's nevertheless room for refinement. The dependence on human operators, the

lengthy training times, the volatile average accuracy ranges, and the significant

modification of datasets (as an example, balancing or profiling) are all examples of such

weaknesses. The subject continues to be in its infancy, and most researchers are

nevertheless carrying out experiments on how to combine exclusive algorithms (including

education, optimization, activation, and classification) and layering procedures to

generate the most correct and efficient solution possible for a given dataset .

23

Table 2.1 Summary of existing surveys and papers related work to deep learning

Accuracy Method

99.99352097511292%

99.99271035194397%

Proposed MLP- Binary classification

Proposed MLP- Multiclass classification

99.83644485473633%

99.99756813049316%

Proposed LSTM- Binary classification

Proposed LSTM- Multiclass classification

99.76% Khamparia et al. [23] RF and WEKA tool

76.5%

80.7%

Vinayakumar et al. [33] DNN- Multiclass classification

Vinayakumar et al. [33] DNN- Binary classification

75.75% Tang et al. [34] DNN- Binary classification

83.28%

81.29%

Yin et al. [35] RNN- Binary classification

Yin et al. [35] RNN- Multiclass classification

97.85 % Shone et al. [36] NDAE-5 Class classification

92.7% L. You et al. [41] RNN

97.90% Alrawashdeh et al. [42] DBN

99% Kim et al. [43] LSTM

88.39%

79.10%

Javaid et al. [44] STL- Binary classification

Javaid et al. [44] STL- 5 Class classification

98.81% [47] stacked NDAE

99.82%

95.65%.

Niyaz et al. [50] SDN- Binary class

Niyaz et al. [50] SDN -8 Class classification

up to 14% more than a lot

of unique use cases
Lee et al. [52] SdA

96% Sahu et al. [53] LSTM

97.5% Alom et al. [54] DBN

95% Almejarb et al. [55] DNN

98.45% Singhania et al. [56] Fast.Ai

99.95% Jullian et al. [58] LSTM

98.35% Rose et al. [60] network profiling

24

3

METHODOLOGY

3.1 Approaches to Solve Attack Detection

Their age alone over 70 years would qualify connectionist architectures as relics, but their

recent rise to prominence in the artificial intelligence realm through innovative designs

and GPU utilization places them at the cutting edge of AI research. Deep learning is not a

singular methodology but rather a confluence of different topologies and techniques that

make it possible to address a wide range of problems.

Far from being new, deep learning has received traction rapidly because of excessive

layers coupled with GPUs. Large layered neural networks are rather efficient at

computation considering they involve many straightforward multiplications. This

efficiency has also led to the uptake of massive records, as deep studying is predicated on

instance statistics for education in those networks with the aid of profitable them based

totally on how nicely they educate; as it is constructed on the method of training neural

networks through the use of example data, after which rewarding them depending on the

effectiveness of their education.

Many exclusive structures and methodologies are carried out in deep learning. This phase

offers six awesome deep learning knowledge of configurations that have been created over

the last long time, as indicated in Figure 3.1. Deep learning frameworks are divided into

two collections: supervised and unsupervised. Commonly deployed techniques consist of

convolutional neural networks (CNN) and Long Short-Term Memory (LSTM). Those are

the two oldest methods on this list.

Additionally, the self-organizing map (SOM), gated recurrent unit (GRU), autoencoder

(AE), deep perception network (DBN), and restricted Boltzmann gadget (RBM) are also

discussed)”.

25

3.1.1 Supervised Deep Learning

Supervised learning is the term used in system learning to indicate a specific trouble

location wherein the goal variable to be predicted is truly marked inside the training data.

3.1.1.1 Convolutional Neural Networks

Convolutional neural networks (CNNs) are a selected form of multilayer neural network

or deep learning structure that takes cues from organic visual systems. Many computer-

imaginative and natural language processing applications stand to benefit from using

CNN.

Convolutional networks, which are generally called CNNs or ConvNets, are a particular

type of deep neural network that may be deployed to identify images. It's a synthetic neural

network that is both difficult and long-lasting. It's vital to understand that feedforward

neural networks, once in a while termed multilayer belief (MLP), are the most popular

model of deep learning. These kinds of models are referred to as "feedforward" models

for the reason that information may additionally pass freely via the model. There are no

feedback connections in the model; therefore, the output of the version isn't always

returned to the model itself.

Yann LeCun is recognized as the originator of the first concept that led to the development

of CNN. The recognition of handwritten characters played a central role in those days'

architectural landscape, much like postal codes. An artificial neural network's deeper

layers take information recombined at each stage and locate edges (simple features), then

use these edges to reconstruct more complex properties located at higher levels of the

network, while the first levels in turn find features within images. The presence of many

layers is one characteristic of a deep network [61].

3.1.1.2 Recurrent Neural Network (RNN)

Most deep learning blueprints are set up on a basic network framework called the recurrent

neural network (RNN). Recurrent networks differ from ordinary multilayer networks due

to the fact that, apart from having connections that transmit information and gradient data

to higher layers, they also have connections going backwards or sideways. These forms

of lateral and backward connections assist RNNs in remembering what they have seen in

26

advance inside the sequence, a capacity useful for coding sequential statistics such as time

series or natural language sentences [62].

 LSTM

The Long Short-Term Memory (LSTM) came up with the concept of a reminiscence cell,

which breaks away from the traditional neural network topologies built on neurons.

However, it is feasible for the reminiscence cellular to maintain its value in reminiscence

for an arbitrary length of time based on when it gets the inputs, therefore, allowing it to

not forget what is essential as opposed to simply what was most recently computed [63].

GRU Networks

The Gated Recurrent Unit (GRU) was unveiled in 2014 as a more simplistic model of the

LSTM. In contrast to the LSTM model, which consists of three gates, with an output gate

being the third gate, this version has only two gates. The first gate is a reset gate, while

the second is an update gate. The update gate makes a decision about what part of the

previous cell state might be introduced to the current cell candidate, creating an up-to-date

cell state. The way those are combined involves passing through a pointwise

multiplication operation, which permits the gradient to drift freely. The update gate

conveys information on the proportion of the preceding cell's content material that is

meant to be stored. The reset gate governs how the new input is blended into the previous

cell's content. A common Recurrent Neural Network (RNN) can be honestly represented

by the use of a Gated Recurrent Unit (GRU), which has a value of 1 for the reset gate and

a value of zero for the update gate [64].

3.1.1.3 Deep Stacking Networks

DSN, which stands for the Deep Convex Network, might be the ultimate running platform.

DSN differs from traditional deep learning frameworks since it contains several impartial

networks that each have their own personal hidden layer in place of an unmarried deep

network. The layout of the structure is supposed to remedy one of the challenges

connected with deep learning: the complexity of the training method. Because the

complexity of education rises with the addition of layers in a deep learning version, DSN

alternatively approaches training as a series of troubles that are treated simultaneously

[67].

27

3.1.2 Unsupervised Deep Learning

When the training facts do not consist of any goal labels, then the system gaining

knowledge of the method is called unsupervised learning. This kind of difficult region is

called a" problem area".

3.1.2.1 Self-Organized Maps

The Kohonen map, also called the self-organized map (SOM), was introduced in 1982

with the aid of Dr. Teuvo Kohonen. It is an unmonitored neural network that helps in data

classification by lowering the dimensionality of the input data set. Although there are

some massive commonalities between a self-organizing map (SOM) and a traditional

artificial neural network, they vary substantially [65].

3.1.2.2 Autoencoders

In 1987, regardless of its misty dawn and early packages, LeCun unveiled that

autoencoders had been used for the first time. The centre layer, hidden layer, and output

layer (ANN) are the three different layers that constitute this specific kind of artificial

neural community. Before being passed to the hidden layer from the input layer, it is first

encoded. The number of nodes inside the hidden layer is much less than inside the input

layer. It is inside this hidden layer where the compressed shape of the original data is held.

The task of the output layer is to try replicating the input layer by using decoder operations

[66].

Restricted Boltzmann Machines

The first RBMs were created by Paul Smolensky in 1986, and they were referred to as

harmoniums at that point. Their creations no longer enticed an awful lot of attention. An

RBM is a two-layer neural network with the input layer and hidden layer arranged one

after the other; every node in the visible layer is attached to each node in the hidden layer,

but there aren't any connections between nodes within a single layer. This differentiation

was brought about because all nodes of both layers had been interconnected within the

original Boltzmann machine, which ended up being too computationally expensive, as

verified with the aid of restricted Boltzmann machines [67].

28

3.1.2.3 Deep Belief Networks

The DBN presents a common network architecture, but the manner of its training is

completely uncommon. An RBM is created for each pair of layers that are connected in a

DBN because the DBN is a system with many hidden levels and is, therefore, complex. A

DBN can be seen as just a collection of RBMs.

It is more than this kind of representation. The sensory inputs are what the input layer of

a DBN presents, while the buried layers develop abstract representations of data and the

output layer has to categorize the network; thus all, these different roles imply that they

operate differently from each other. Unsupervised pretraining comes first, and fine-tuning

comes next, during which an instructor plays a directing role [67].

Figure 3.1 Deep Learning Architecture

29

3.2 Detect Attacks using DL

As seen in Figure 3.2, in this part, the challenges related to attack detection are explored

via the statistical categorization of measures and the use of DL. Classification is often

achieved via the use of the supervised learning labelled data approach. In the course of

our inquiry, we will be leveraging the RNN to acquire the best findings.

This approach recasts the challenging challenge of identifying assaults as the process of

identifying anomalies. This is because assaults generally don't happen very frequently, but

when they do, their signature or, more precisely, the distribution of datasets them apart

from what one would see in an environment where operations are carried out regularly.

This evolution of a signature is reflected in the data gathered over time. To be more

precise, we use a model called a single hot encoder to discover the distribution of a given

data set under typical circumstances. With this method, we may ascertain if the incoming

data has an appreciably different signature.

Detecting assaults using Deep Learning (DL) includes utilizing the capabilities of neural

networks to learn patterns and behaviours indicative of attacks from large datasets.

a) Data Collectio Gathering a labeled dataset of machine log or network traffic data that

carries examples of both legitimate and malicious actions. The DL version makes use

of this dataset as training records. Broadly applicable datasets, KDD_99.

b) Preprocessing Data: To ensure data quality and remove noise, the collected data must

be cleaned and preprocessed. To account for class imbalances, this may include

standardizing, balancing, and removing redundant attributes from the dataset.

c) Architecture Model: Successful identification of attacks relies on choosing a strong

DL architecture. Common designs say that LSTM networks are good because they are

a type of RNN-based deep learning architecture and are effective for analyzing

temporal patterns in data since they are presented one after another [68]. and MLP

(MultiLayer Perceptron), which looks at all the parts of data simultaneously, the work

by Abdullah et al. [69]. Developed such a CNN-based model for DDoS attack detection

in the IoT environment.

d) Training of Model: The deep Learning model may be trained via backpropagation of

modifications to the version parameters by first sending preprocessed data via the

30

chosen model architecture. This method allows the model to identify functions and

styles that differentiate attacks from everyday behavior.

e) Evaluation Model: The skilled model's overall performance wishes to be assessed

with a validation set. The area under the Receiver Operating Characteristic (ROC)

curve, F1-score, Recall, accuracy, and precision are ordinary assessment metrics for

DL-primarily based intrusion detection structures, other than F1-rating, which is an

assessment metric that measures a check's accuracy in modeling the true values. Alazab

et al.'s [70] work supplied performance metrics for the evaluation of a CNN-based

model for detecting internet-based total attacks.

f) Deployment of Model: After demonstrating adequate performance, the DL model may

be used in a production setting to keep an eye out for potential attacks in incoming data.

Real-time monitoring and alerting would require integrating the DL model into an IDS

or SIEM system.

Figure 3.2 Deep learning architecture of the proposed models

31

3.2.1 Multi-Layer Perceptron

MLP is a normal kind of artificial neural network; it is used for classification and

regression-demanding situations and is called a feedforward neural network algorithm

(MLP). It's made of numerous layers of neurons or network components, with each layer

providing an output for the next layer's input.

The fundamental composition of MLP is composed of three main types of layers:

Input Layer: The input layer accepts traits that are entered, which are frequently termed

feature vectors or characteristic representations, and they are transmitted to succeeding

layers. The attributes of the input information are represented by every node in the input

layer.

Hidden Layers: The layer that occurs between the input layer and the output layer is

called a hidden layer. By activating a node, they are in charge of picking up intricate

representations of the incoming data. To make the network capable of identifying

nonlinearity in the information, every node in the hidden layers applies a nonlinear

activation function to the weighted sum of its inputs. Additionally, the various hidden

layer nodes ought to be correct, because a number of the hidden layer nodes contribute to

the model now not functioning well with complex information.

Output Layer: he output layer includes the conclusion of the network. This is probably

a numerical result for regression tasks or a projected class label for classification tasks.

The output layer utilizes various activation functions compared to the hidden layer. For

example, the output layer generally employs a Sigmoid function for binary category

responsibilities and a SoftMax characteristic for multiclass class responsibilities.

Employ unique optimization techniques, like backpropagation. Backpropagation

determines the slope of the loss function primarily based on the model's parameters and

adjusts the parameters to minimize the disparity among the predicted and real outputs,

weights, and biases of the neurons in the MLP via training. It acquired information using

the procedure.

MLP is a versatile algorithm that can be used in numerous applications, including Speech

recognition, natural language processing, photo classification, etc. With the right

optimization of hyperparameters and cautious data management, packages may be simple

32

and feature extremely good accuracy. However, without enough optimization and

tweaking, overfitting and gradual convergence may additionally result.

A type of feedforward artificial neural network that might be entirely linked is called a

multilayer perceptron, or MLP. The period "multilayer perceptron" (MLP) is now and

then used inconsistently. Sometimes feedforward artificial neural networks (ANN),

Sometimes are used more particularly to refer to networks that are comprised of multiple

layers of perceptrons that have a threshold of activation [71].

An MLP can handiest expand with at least 3 node layers. Every node inside the network,

besides the input nodes, acts as a neuron and makes use of a non-linear activation

characteristic. Backpropagation, which is another term for the supervised learning

technique used in MLP schooling, is based on the chain regulations of computerized

differentiation reverse strategy [72][73][74][75][76][77] The reason MLP differs from a

linear perceptron is because it has multiple layers and non-linear activation; this enables

it to differentiate records that aren't linearly separable [78].

Each neuron in a multilayer perceptron undergoes the transformation of its input weights

into its output value through the linear activation function. This property allows for the

simplification of any quantity of layers right down to a tow-layer input-output model using

techniques from linear algebra since the output value of every neuron is directly

proportional to the inputs via a linear equation. The use of nonlinear activation features in

MLPs is influenced by way of biological plausibility; actual neurons no longer surely

summate their inputs, but, instead fire action possibilities based on them. Consequently,

those features are chosen to resemble the firing frequency of real neurons. Sigmoidal

activations include two well-known forms that have been used substantially:

𝑦(𝑣𝑖) = tanh(𝑣𝑖) 𝑎𝑛𝑑 𝑦(𝑣𝑖) = (1 + 𝑒−𝑣𝑖)−1 (3.1)

The first is a -1 to 1 hyperbolic tangent, while the second is a logistic function, despite

having almost the same structure. The logistic function's range is 0 to 1 instead of -1 to 1.

In this case, 𝑣𝑖 represents the weighted total of the input connections to the node (neuron),

while 𝑦𝑖 represents the output of the node. Reverser and Softplus are two more activation

functions that have been suggested as workable alternatives. One kind of more complex

33

activation function is the radial basis function. Radial basis networks are one family of

supervised neural network models that make use of these functions.

In the field of deep learning rectified linear unit (ReLU) has garnered interest lately as a

potential fix for numerical problems with the sigmoid.

Since MLP is completely integrated, each layer's node is coupled to the next layer's node

with a certain weight 𝑤𝑖𝑗.

Figure 3.3 MLP Architecture

In the deep layers of neural networks, there is a kind of activation function that is called

the Rectified Linear Unit (ReLU) because it remains persistently in the layers. The

expression of ReLU mathematically takes the form f(x) = max (0, x), with x being the

input to the neuron. In essence, what ReLU does is leave positive values unchanged and

change negative input values into zeros [79].

Using ReLU as an activation function in an MLP helps the network learn complex

representations and speeds up the training process, as it allows for the efficient

backpropagation of gradients during the training phase. Expressing it mathematically:

𝑦𝑜𝑢𝑡 = {0,𝑥<0
𝑥,𝑥≥0 (3.2)

The dropout layer is a component employed in the development of neural networks to

mitigate overfitting. During training, specific nodes are selectively omitted in different

runs with a certain probability, simulating their absence as if they were not integral to the

network structure [80].

34

The risk of overfitting, represented by connected layers that lead to decision-making,

which is characterized by good performance on training data but failing in fresh data,

creates the problem of overfitting. A possible solution is to include a dropout layer during

the model architecture (see Figure 3.4). In this layer, both incoming and outgoing edges

linked to deactivated components are removed; this is achieved by randomly deactivating

some of the neurons along with their connections. Consequently, the network will have a

more compact topology than it would otherwise have had; it should then be trained using

input data. The weights of all nodes that were turned off at this stage should be brought

back to their initial values after the session has been completed. By using dropout,

overfitting is greatly reduced, improving the model's capacity to generalize and perform

well on data that was not previously recognized. This method guarantees a more

dependable and strong model [81].

Figure 3.4 (A) Simple Neural Network, (B) After Dropout, the Neural Network

3.2.1.1 Sigmoid Activation Function

The Sigmoid Activation Function is a mathematical function represented by its distinct

"S" shaped curve. It is useful for use cases of logistic regression or building simple neural

networks. The Sigmoid Function is the proper choice for executing a classifier when

dealing with situations that have several correct answers. Use this function element-wise

on raw output. Typically, the output of the Sigmoid Function falls within the range of 0

to 1 or -1 to 1 [82]. This is what the Sigmoid Function looks like:

𝑓(𝑥) = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) =
1

1+𝑒−𝑥 (3.3)

35

3.2.1.2 Softmax Activation Function

The intriguing Softmax Activation Function, also known as SoftArgMax or Normalized

Exponential Function, operates on real number vectors as input and transforms them into

a probability distribution where each component is computed as the exponential of the

corresponding input element. It allows negative and non-integer inputs that might not sum

up to one before transformation; all elements are scaled between 0 and 1 after applying

Softmax, with the total sum equating exactly to 1, hence forming a valid probability mass

function [82]. A more insightful description can be obtained when more numbers are

included in the input set. The formula for the Softmax function is as follows:

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑧𝑗) =
𝑒

𝑧𝑗

∑ 𝑒𝑧𝑘𝑘
𝑘=1

𝑓𝑜𝑟 𝑗 = 1, … , 𝑘 (3.4)

3.2.2 Recurrent Neural Network

A specific type of neural network is known as a recurrent neural network, abbreviated as

RNN. These networks were created with the intention of dealing with sequential data.

Unlike processing input in a straightforward manner as done by normal neural networks,

RNNs have feedback loops that allow information to persist within the network; hence,

RNNs turn out to be ideal for handling sequential data, including but not limited to time

series, audio, and natural language, because of their inherent memory property that

conventional neural networks lack.

A recurrent neural network (RNN) can store a hidden state, which allows it to remember

information over previous time steps. This makes each time step not only produce an

output but also have that output be determined by the previous hidden state and the input

at that time step specifically. The inability of standard feedforward networks to recognize

such connections in sequential data would make them unsuitable for this task; however,

the network can do so now, thanks to RNNs.

RNNs are available in various structures. The most common are the vanilla RNN, LSTM

network (long short-term memory), and GRU network (gated recurrent unit). LSTM and

GRU networks are more advanced types of RNNs. They were designed to address the

issue of vanishing gradients, which can occur during training deep neural networks.

36

Recurrent Neural Networks (RNNs) find their way into language translation, emotion

analysis, voice recognition, and picture captioning, among other uses. In speech

recognition and picture captioning (two applications), they are used to translate audio

signals into text or provide natural language descriptions of images, respectively. These

applications involve digital data processing. In sentiment analysis, RNNs help determine

whether a given text is being positively evaluated or not. In addition to being used for

language translation between different languages based on situations where RNNs have

been deployed, such details show how RNNs can be universally applied as an effective

tool for processing sequential data.

One type of artificial neural network is recurrent neural networks (RNNs), where the node

connections may form loops. This allows the output of some nodes to be fed back as input

to the same nodes in future time steps within the network, resulting in dynamic temporal

behaviour. RNNs differ from other network types in that they can process sequences of

inputs of variable length since these sequences are entirely dependent on the state

information that is kept within the network during processing, which flows through cycles

[83] [84] [85]. As a consequence, applications such as connected cursive handwriting

recognition or speech synthesis can be implemented with RNNs [86]. [87] [88] Being

Turing complete entities, recurrent neural networks have no limitations regarding the

amount and duration of computational tasks that could be executed since any program

might be presented as a set sequence produced by some function on its inputs and storing

internal results or sketching outputs for future use [89].

Convolutional neural networks are said to have a fixed impulse response, while recurrent

neural networks have an infinite impulse response. Both types of networks exhibit

temporal behaviour [90]. Recurrent networks can be thought of as including the feedback

from their output in addition to the next input, with other terms more descriptive of that

direct cycle use: additional stored states are used if more general dynamic information is

included and kept for some time (even though part of it would decay), or more generally.

A feedforward network cannot include such connections because this would create cycles,

and they can be found in both long-term short-term memory networks (LSTMs) and gated

recurrent units. A Feedback Neural Network (FNN) is another name for this type of

network.

37

Figure 3.5 Recurrent Neural Network.

3.2.2.1 Long Short-Term Memory

A type of structure found in recurrent neural networks, Long Short-Term Memory

(LSTM), is widely used in deep learning applications such as time series prediction,

language modeling, and speech recognition [91].LSTMs were introduced by Sepp

Hochreiter and Jürgen Schmidhuber in 1997 as a more effective alternative to standard

RNNs aiming to improve long-term memory capabilities and combat the vanishing

gradient problem. Ever since their inception, LSTMs have outperformed themselves, with

newer accuracy benchmarks set consistently across various domains [92].

At the core of LSTMs lies the concept of memory cells: entities capable of storing data

for long durations while also deciding which information to retain or forget. An LSTM

cell typically consists of three parts that help facilitate this functionality:

- Input Gate: A gate that determines the maximum data intake and processing for

updating the memory cell. To figure out the blend between input data and past hidden

states, LSTM utilizes a sigmoid activation function, which helps in deciding when is

the best time for memory cell updates.

- Forget Gate: This gate decides on the removal of any unimportant information from

the memory cell by controlling incoming input and hidden state through a sigmoidal

activation function.

- Output Gate: This is what decides which part of the memory cell to reveal as its

hidden state in the view of typical LSTM workings; it sums up the incoming input and

38

previous hidden state through sigmoid activation, sometimes also deciding when to

send out stored data.

The LSTM cell does have a hidden state (which represents the output of the cell after

passing through this gate) and a memory cell that stores updated data from input and forget

gates. At each time step, these two entities are modified by LSTM so that long-term

dependencies can be captured from the input sequence.

The problem of vanishing gradients in traditional RNNs is tackled by the design of LSTM,

as it allows gradients to flow across the gates smoothly. LSTMs can deal with long

sequences of data because they selectively update and forget information from the

memory cell, which helps preserve important information over some time, thus making

them efficient for modelling temporal interactions.

In general, Long Short-Term Memory (LSTM) networks are a very efficient kind of

recurrent neural network often used for analyzing sequence data. Due to their remarkable

capacity to capture long-term correlations, they are particularly well-suited for tasks that

require modelling complex temporal patterns.

At the same time, LSTM models began to outperform traditional models in many

applications related to speech, which include voice recognition, natural language

translation, and video analysis. This led to a drastic change in the field of voice

recognition.

[93]. The first RNN that won a pattern recognition competition was an LSTM network

trained with Connectionist Temporal Classification (CTC); after winning several

competitions, it became the first RNN to do connected handwriting recognition in 2009

[94]. In 2014, just using CTC-trained RNNs, Baidu was able to surpass the 2S09

Switchboard Hub5'00 benchmark from the voice recognition dataset without utilizing

traditional techniques of speech processing [95].

The Google Android case involved using LSTM to better the synthesis of text-to-speech

in addition to large-vocabulary voice recognition [87][88] and text-to-speech synthesis

[96][94][97]Google's voice recognition, coming up in 2022, reportedly showed

outstanding performance with an accuracy of 99.36% achieved through CTC-trained

LSTM[98].

39

LSTM contributed significantly to language modeling and multilingual language

processing and also led to improvements in machine translation down the line. The

development of automated picture captioning saw major strides as a result of using Long

Short-Term Memory (LSTM) and convolutional neural networks (CNNs) [99].

Figure 3.6 LSTM Architecture

LSTM Equations

The inputs and outputs of an LSTM are depicted in Figure 3.7 below for a single timestep.

This represents the input, output, and equations for a single timestep of a time-unrolled

representation. The CNN output or the input sequence itself can both be used as the

LSTM's input 𝑥𝑡 . The inputs from the prior timestep LSTM are ℎ𝑡−1 and 𝑐𝑡−1. The

LSTM's output for this timestep is 𝑜𝑡. Moreover, the LSTM generates the 𝑐𝑡 andℎ𝑡 for

use by the subsequent time step LSTM [91].

 Figure 3.7 LSTM input outputs and the corresponding equations for a single timestep

The LSTM cell has several equations that govern how it processes input and updates its

internal state. The equations are as follows:

40

First, the input gate (𝑖𝑡) equation controls how much new information is added to the

memory cell. It takes the input at time step t)𝒙𝒕)and the previous hidden state ℎ𝑡−1 as

inputs, and produces a value between 0 and 1 that determines how much of the input

should be added to the memory cell 𝑖𝑡:

𝑖𝑡 = 𝜎(𝑊_{𝑥𝑖} 𝑥𝑡 + 𝑊_{ℎ𝑖} ℎ𝑡−1 + 𝑏𝑖) (3.5)

where 𝑤𝑥𝑖, 𝑤ℎ𝑖, and 𝑏𝑖 are learnable parameters, and σ is the sigmoid activation function.

Next, the forget gate equation (𝑓𝑡) sets the proportion of the prior memory cell state 𝑐𝑡−1

that should be preserved. The output gate receives the same inputs as the input gate and

generates a value between 0 and 1. This value defines the extent to which the prior cell

state 𝑓𝑡 should be retained:

𝑓𝑡 = 𝜎(𝑊_{𝑥𝑓} 𝑥𝑡 + 𝑊_{ℎ𝑓} ℎ𝑡−1 + 𝑏𝑓) (3.6)

where

𝑊_{𝑥𝑓}, 𝑊_{ℎ𝑓}, and 𝑏𝑓 are learnable parameters, and σ is the sigmoid activation function.

The next step is to update the cell state with the information from the input gate and forget

gate. This is done by first creating a candidate value 𝐶𝑡
′ that could be added to the cell

state and then combining it with the previous cell state 𝑐𝑡−1 based on the forget gate and

input gate:

𝐶𝑡
′ = 𝑡𝑎𝑛ℎ(𝑊_{𝑥𝑔}𝑥𝑡 + 𝑊_{ℎ𝑔} ℎ𝑡−1 + 𝑏𝑔) (3.7)

𝑐𝑡 = 𝑓𝑡 ∗ 𝑐𝑡−1 + 𝑖𝑡 ∗ 𝐶𝑡
′ (3.8)

where 𝑊_{𝑥𝑔}, W_{ ℎ𝑔}, and 𝑏𝑔 are learnable parameters, and tanh is the hyperbolic

tangent activation function.

Finally, we have the output gate (𝑜𝑡) equation, which determines how much of the updated

cell state should be output at the current time step (ℎ𝑡). It takes the input and previous

hidden state as before, along with the updated cell state (𝑐𝑡), and produces a value between

0 and 1 that determines how much of the updated cell state should be output (𝑜𝑡):

𝑜𝑡 = 𝜎(𝑊_{𝑥𝑜}𝑥𝑡 + 𝑊_{ℎ𝑜} ℎ𝑡−1 + 𝑊_{𝑐𝑜} 𝑐𝑡 + 𝑏𝑜) (3.9)

41

where 𝑊_{𝑥𝑜}, 𝑊_{ℎ𝑜} , 𝑊_{𝑐𝑜}, and 𝑏𝑜 are learnable parameters, and σ is the sigmoid

activation function.

The final hidden state at time step t is then computed as:

ℎ𝑡 = 𝑜𝑡 ∗ 𝑡𝑎𝑛ℎ(𝑐𝑡) (3.10)

where 𝑡𝑎𝑛ℎ is the hyperbolic tangent activation function.

42

4

 APPROACH OF DL ALGORITHMS

4.1 APPROACH OF ALGORITHMS

Applying machine learning to network intrusion detection involves constructing a model

using historical network information to gather knowledge about ordinary network

conduct. Subsequently, this skilled model is used to hit upon deviations from regular

community patterns in actual-time community site visitors. This may additionally be a

useful resource in the detection of viable protection vulnerabilities, consisting of malware

or undesirable intrusion attempts.

Machine learning can be utilized in a whole lot of approaches to network intrusion

detection. It is useful to employ supervised studying, wherein classified samples of each

regular and aberrant community interest are used to educate the version. The model may

also then be used to categorize new network site visitors as traditional or unusual based

totally on how similar they are to the samples in the training dataset.

The objective of the use of gadget learning in network intrusion detection is to enhance

the efficacy and precision of figuring out possible protection vulnerabilities and to

facilitate safety groups indirectly and effectively addressing them.

One way to try may be to use the scikit-study bundle for Python, which has quite a few

algorithms for supervised and unsupervised mastering. These methods can be used to

educate a model about the usage of historical community facts. The trained version may

additionally be used to classify clean network visitors as both extraordinary and regular.

The following are the basic steps involved in the use of machine learning to gain

knowledge of community intrusion detection:

1. Gather and prepare community records: This involves accumulating statistics from

numerous resources, along with community site visitor facts, and then organizing and

exceptional-tuning them for you to put together for schooling gadget mastering models.

This would possibly consist of recognizing and classifying examples of regular and

bizarre conduct.

43

2. Train a machine learning model: This includes the use of supervised learning to teach

a model on the accumulated and preprocessed community data. Typically, this method

requires splitting the data into training and test sets. The developments and patterns of

traditional community hobbies are then determined by the usage of the training

information.

3. Assess the running prototype: Test records ought to be applied after education for you

to affirm the accuracy and capability of the model. This will contribute to ensuring that

the version can correctly perceive both regular and aberrant community events.

4. To discover network breaches in real-time, use the following version: Once trained and

assessed, the version may be used in real-time to classify new community traffic and

detect any safety flaws. To immediately notify protection specialists of any threats, this

could include configuring indicators or notifications or easily incorporating the model into

protection gear and systems that are already in use.

The number one goal of using system learning in community intrusion detection is to

enhance the accuracy and efficacy of figuring out viable safety dangers and to empower

security groups to reply directly and successfully.

Figure 4.1 A proposed framework for the detection of attacks

One -hot Data Normalization

Feature

selection

Classification

Preprocessing

KDD_99

Binary Classification Multi Classification

LSTM MLP

Accuracy

Loss

Recall

Training

Testing

Result

44

4.2 Data Normalization

The mixed integer and floating point values, which varied from 0 to 1, made learning

challenging, as in Tables 4.1 and 4.2. We used the min-max normalization strategy to fix

the issue by converting the numerical attribute values 𝐾𝑖𝑗 into the range of 0 to 1. This

method aims to improve training consistency and model performance by aligning features

in the following ways:

𝐾𝑓𝑗 =
𝐾𝑓𝑗−min(𝐾𝑓)

max(𝐾𝑓)−min(𝐾𝑓)
 (4.1)

The max and min values of the numeric attribute 𝐾𝑓 denote a max(𝐾𝑓) and m (𝐾𝑓)

respectively, while 𝐾𝑓𝑗 represents the normalized feature value within the range of 0 to 1.

Table 4.1 Data before normalization

d
u

ra
ti

o
n

 P
ro

to
co

l_
ty

p
e

 se
rv

ic
e

fl
ag

S
rc

_
b
y

te
s

D
st

_
b
y

te
s

la
n
d

W
ro

n
g
_

fr
ag

m
en

t
 u

rg
en

t

h
o

t

…

d
st

_
h
o

st
_
sr

y
_

co
u
n

t
 d
st

_
h
o

st
_
sa

m
e_

sr
y

_
ra

te

d
st

_
h
o

st
_
sa

m
e_

sr
y

_
ra

te

d
st

_
h
o

st
_
sa

m
e_

sr
y

_
ra

te

L
ab

el

0 0 tcp http SF 181 5450 0 0 0 0 … 9 1.0 0.0 0.0

N
o

rm
al

1 0 tcp http SF 239 486 0 0 0 0 … 19 1.0 0.0 0.0

2 0 tcp http SF 235 1337 0 0 0 0 … 29 1.0 0.0 0.0

3 0 tcp http SF 219 1337 0 0 0 0 … 39 1.0 0.0 0.0

4 0 tcp http SF 217 2032 0 0 0 0 … 49 1.0 0.0 0.0
5 rows x 42 columns

Table 4.2 Data after normalisation

d
u

ra
ti

o
n

P
ro

to
co

l_
ty

p
e

se
rv

ic
e

fl
ag

S
rc

_
b
y

te
s

D
st

_
b
y

te
s

la
n
d

W
ro

n
g
_

fr
ag

m
en

t

u
rg

en
t

h
o

t

d
st

_
h
o

st
_
sr

y
_

co
u
n

t

d
st

_
h
o

st
_
sa

m
e_

sr
y

_
ra

te

d
st

_
h
o

st
_
sr

v
_

d
if

f

_
h

o
st

 r
at

e

la
b

el

0 -0.067792 tcp http SF -0.002879 0.138664 0.006673 -0.04772 -0.002571 -0.044136 -1.694322 0.599394 -0.158629

N
o

rm
al

1 -0.067792 tcp http SF -0.002820 0.138664 0.006673 -0.04772 -0.002571 -0.044136 -1.600018 0.599394 -0.158629

2 -0.067792 tcp http SF -0.002824 0.138664 0.006673 -0.04772 -0.002571 -0.044136 -1.505714 0.599394 -0.158629

3 -0.067792 tcp http SF -0.002840 0.138664 0.006673 -0.04772 -0.002571 -0.044136 -1.411410 0.599394 -0.158629

4 -0.067792 tcp http SF -0.002842 0.138664 0.006673 -0.04772 -0.002571 -0.044136 -1.317106 0.599394 -0.158629

5 rows x 42 columns

45

4.3 One-Hot Encoding

One technique for converting categorical data into a numerical representation appropriate

for mathematical calculations is one-hot encoding, which is used in data analysis and

machine learning [100].

A technique called "one-hot encoding" encodes every category as a binary vector. The

number of categories in the variable equals the length of the vector. The vector's members

each stand for a distinct category; the first element is "hot" (value = 1), while the

remaining elements are "cold" (value = 0). The encoded data item's specific category is

shown by the hot element, while the other categories are shown by the cold elements. The

benefit of one-hot encoding is that it makes it possible to include categorical data in

machine-learning models that were solely intended to process numerical input. We may

employ categorical data in mathematical operations like regression analysis and

computing the separations between data points by providing it with a numerical

representation. The one-hot-encoding technique was used to translate the three category

features of protocol type, service, and flag into numerical values. to choose the features of

the dataset that depended on it for classification, we use (TCP, UDP, and ICMP) which

are the three main protocol types of packet data. As a result, the packet data is divided into

normal and attack categories using these three protocols(protocol type) as well as the

service categories and their flag state. The protocol uses flags, which is a complex

handshake procedure to confirm that a trustworthy connection has been established

between the communication users. As seen in the accompanying table.

Table 4.3 Categorical features transform into numeric values

Index Protocol_type Service Flag

0 Tcp HTTP SF

1 Tcp HTTP SF

2 Tcp HTTP SF

3 Tcp HTTP SF

4 Tcp HTTP SF

46

Table 4.4 Applying one-hot encoding to convert categorical attributes to numerical

p
ro

to
co

l_
ty

p
e_

ic
m

p

p
ro

to
co

l_
ty

p
e_

tc
p

p
ro

to
co

l_
ty

p
e_

u
d
p

se
rv

ic
e_

IR
C

se
rv

ic
e_

X
1

1

se
rv

ic
e_

Z
3

9
_

5
0

se
rv

ic
e_

au
th

se
rv

ic
e_

b
g

p

se
rv

ic
e_

co
u

ri
er

se
rv

ic
e_

cs
n

te
_

n
s

…

fl
ag

_
R

E
J

fl
ag

_
R

S
T

O

fl
ag

_
R

S
T

O
S

0

fl
ag

_
R

S
T

R

fl
ag

_
S

0

fl
ag

_
S

1

fl
ag

_
S

2

fl
ag

_
S

3

fl
ag

_
S

F

fl
ag

_
S

H

0 0 1 0 0 0 0 0 0 0 0 … 0 0 0 0 0 0 0 0 1 0

1 0 1 0 0 0 0 0 0 0 0 … 0 0 0 0 0 0 0 0 1 0

2 0 1 0 0 0 0 0 0 0 0 … 0 0 0 0 0 0 0 0 1 0

3 0 1 0 0 0 0 0 0 0 0 … 0 0 0 0 0 0 0 0 1 0

4 0 1 0 0 0 0 0 0 0 0 … 0 0 0 0 0 0 0 0 1 0

 5 rows x 80 columns

4.4 Binary Classification

One of the machine learning assignments is binary classification, which involves

predicting one of two potential outputs using a given set of input attributes. The two

possible results are often known as the "positive" and "negative" categories, or as "class

1" and "class 0" [101].

For example, within the vicinity of clinical diagnostics, it can be useful to expect, based

totally on an affected person's signs and check findings, whether or not or no longer the

affected person has a positive illness. In this case, the negative elegance would represent

people who are unaffected by the illness, at the same time as the nice magnificence would

represent people who are.

Typically, step one in fixing a binary class hassle is to bring together a classified dataset

that carries occasions with both advantageous and negative results. A gadget studying a

set of rules will then gain knowledge of the prior dataset to create a version that could

effectively classify new fashions.

Support vector machines, choice trees, random forests, and logistic regression are a few

of the techniques used in binary classification. Furthermore, binary type is an important

use of deep learning. The selection of the algorithm is contingent upon the characteristics

of the data and the particular issue being addressed. As seen in Figure 4.2

47

Figure 4.2 Binary- Classification

4.4.1 Binary Classification with MLP Classifier

For binary type, a specific sort of neural network version known as a multi-layer

perceptron (MLP) can be used. A Multi-Layer Perceptron (MLP), a type of neural

community, includes an input layer, an output layer, and one or more hidden layers of

artificial neurons.

To use a multilayer perceptron (MLP) for binary type, one must first get a labeled dataset

that includes examples of each tremendous and poor eventuality. We then use this dataset

to teach a Multilayer Perceptron (MLP) for you to construct a model that efficiently

classifies new cases.

During the training process, the Multilayer Perceptron (MLP) acquires the capacity to

alter the weights and biases of the artificial neurons in every layer. This update takes into

account the input data and the intended output. The purpose is to limit a loss characteristic

that quantifies the discrepancy between the anticipated and real outputs of the MLP.

After the training segment is over for the binary class, we may also utilize a Multilayer

Perceptron (MLP) to predict the class of new instances. An estimate of the fantastic

elegance's chance is frequently the MLP's output. To flip this probability estimate right

into a binary prediction, we can also follow a threshold. We forecast the negative class if

48

the probability estimate is beneath the threshold, and we anticipate the positive class

otherwise.

A Multilayer Perceptron's (MLP) performance for the binary classes is often assessed

using metrics including accuracy, F1 score, don't forget precision, and recall. The metrics

compare the performance of the MLP on the check dataset, which consists of samples that

are not employed within the training segment.

An MLP's ability to establish complex, non-linear connections between the class

designation and the enter capabilities is a plus on the subject of binary classification. The

MLP's success is, however, dependent on the selection of hyperparameters, which include

the range of hidden layers, the variety of neurons in every layer, and the learning ratio.

These hyperparameters can be modified by using strategies like grid seek or random

search to enhance the MLP's overall performance on the test dataset.

4.4.2 Binary Classification with LSTM Classifier

To use an LSTM for the binary categories, you normally need initially a categorized

dataset that consists of examples of both positive and negative conditions. Next, we

educate an LSTM model using the formerly said dataset to get the functionality effectively

classifying new examples.

During the training segment, the LSTM set of rules learns to gradually system the

incoming entry flow, altering its internal nation at each step. The LSTM creates a hidden

state with the resource of the present-day input and the previous inputs in the sequence.

After reading the whole sequence, the final hidden state of the LSTM is acquired with the

aid of a feedforward neural network, which transforms it into a binary category result. The

result regularly yields an estimate of the probability of the positive category.

Once the training section is complete, it makes predictions on the class of fresh instances

using the LSTM version for binary classification. The input series feeds to the LSTM

incrementally, updating the internal state at each time step. Using the feedforward neural

network's output, we can generate a probability estimate for the positive class after the

collection processing is finished. We might also then flip this chance estimate into a binary

prediction by adding a threshold.

49

Measures like accuracy, F1 score, recollect, and precision are regularly used when

inspecting the utility of an LSTM version for binary categories. Metrics are used to assess

the overall performance of the LSTM model on the looked at the dataset, which contains

examples that have not been used within the training segment.

An LSTM can acquire and recognize long-time period dependencies within the input

collection and research in-depth details about the nonlinear correlations among the

category label and the entered information, which can be useful in binary classification

problems. Nonetheless, the hyperparameters that affect the LSTM's effectiveness consist

of the wide variety of LSTM layers, the wide variety of neurons in every layer, and the

learning rate. To improve the LSTM's performance on the test dataset, those

hyperparameters can be improved by using strategies like random or grid seek.

4.5 Multi-Class Classification

Multi-class class is a device for gaining knowledge, where the objective is to predict one

of several possible results based on input characteristics. Multi-class categorization is the

term used when there are more than two potential effects, and every final result is typically

represented via a special class label [102] .

To distinguish pictures, it is probably beneficial, for example, to categorize a photo into

many categories, such as "dog," "chook," or "cat." Here, every class is connected to a

unique special label; the goal is to determine which label best appropriately describes the

photo.

The manner of resolving multi-class category trouble frequently begins with the

compilation of a dataset including classified examples for every capability class. Then,

using the formerly given dataset, we train a machine learning algorithm to construct a

model that can effectively categorize new instances.

It will be used as a multi-class classification version to appropriately become aware of the

class of fresh instances after the training section is over. An estimate of the likelihood for

each class label is typically the result of a multi-class classification model. We may

identify the class with the highest probability as the expected class for the given input

instance.

50

Multi-class class fashions are regularly assessed using the F1 rating, accuracy, keep in

mind, and precision as key performance indicators. These metrics compare the version's

overall performance on the test dataset, which includes samples that were not included in

the training segment after applying the version. The aim is to create a model that

demonstrates exceptional performance on unlabeled information and can accurately

classify input instances into their respective class labels.

4.5.1 Multi-Class Classification using MLP Classifier

One type of neural community model that may be used to solve problems like multi-class

categorization is the multi-layer perceptron (MLP). A Multi-Layer Perceptron is

fabricated from a neural community's feedforward production (MLP). It is made up of one

or more hidden layers constructed of synthetic neurons, an input layer, and an output layer.

When using Multi-Layer Perceptron (MLP) for multi-class classification, the first step is

to get a categorized dataset that consists of samples for every class. Next, we use this

dataset to educate a Multilayer Perceptron (MLP) with the intention of creating a model

that may, as it should, classify novel instances.

Throughout the training segment, the Multilayer Perceptron (MLP) modifies the weights

and biases of its artificial neurons in every layer based on the input information and the

favoured output. The goal is to reduce a loss function that quantifies the difference

between the predicted output and the actual output of the MLP.

When the MLP for multi-class classification has completed its training segment, we may

additionally use a Multi-Layer Perceptron (MLP) to expect the class of fresh instances.

The MLP generally offers a chance estimate for every class label as an output. The

projected class for the given input instance might also then be decided based on which

class has the best possibility.

The performance of a Multi-Layer Perceptron (MLP) in multi-class classification tasks is

often evaluated using metrics that include accuracy, F1 score, recall and precision. These

metrics examine the MLP's performance when it comes to checking dataset samples that

were not used within the training segment.

The capacity of an MLP to set up complicated, non-linear correlations between the entered

information and the class designation is one benefit of using multi-class classification.

51

The hyperparameters that affect the MLP's performance include the range of hidden

layers, the variety of neurons in each layer, and the learning rate. Grid seek and random

search strategies can be used to adjust those hyperparameters, to enhance the MLP's

overall performance on the check dataset. Regularization techniques will also be used to

reduce overfitting and improve the generalization capability of the model.When the MLP

for multi-class classification has completed its training segment, we may additionally use

a Multi-Layer Perceptron (MLP) to expect the class of fresh instances. The MLP generally

offers a chance estimate for every class label as an output. The projected class for the

given input instance might also then be decided on based on which class has the finest

possibility.

The performance of a Multi-Layer Perceptron (MLP) in multi-class classification tasks is

often evaluated the usage of metrics which include accuracy, F1 score, take into account,

and precision. These metrics examine the MLP's performance while it comes to check

dataset samples that were not used within the training segment.

The capacity of an MLP to set up complicated, non-linear correlations between the enter

information and the class designation is one gain of using in multi-class classification.

The hyperparameters that have an effect on the MLP's performance include the range of

hidden layers, the variety of neurons in each layer, and the learning rate. Grid seek and

random search strategies can be used to adjust those hyperparameters, in an effort to

enhance the MLP's overall performance at the check dataset. Regularization techniques

will also be used to reduce overfitting and improve the generalization capability of the

model.

Figure 4.3 MLP architecture. The architecture has a single hidden layer with 5 units.

52

4.5.2 Multi-Class Classification using LSTM Classifier

Using an LSTM for multi-class classification frequently begins with acquiring a

categorized dataset along with samples from numerous classes. Next, we train an LSTM

(Long Short-Term Memory) model using the dataset noted earlier. The goal of this method

is to come to be properly categorized new instances into the relevant classes.

During the training section, the Long Short-Term Memory (LSTM) version carefully

evaluates the incoming sequence of information and modifies its internal nation at every

step. Each time a generation takes a region, the LSTM creates a hidden state using records

from the inputs that came earlier than and from the current entry.

After the complete collection is analysed, the LSTM's very last hidden state is sent right

into a feedforward neural network, which transforms it into a multi-class output. The final

results are often a vector of possibilities, in which each likelihood is related to a certain

class.

After training, a class of new instances will be expected using an LSTM version for multi-

class classification. The LSTM can manner the input series sequentially, updating its inner

state at each step. The feedforward neural community generates an output when sequence

processing is finished, which can be used to build a vector of chances, each of which is

connected to a certain class. It might also, therefore, be decided that the category with the

highest opportunity is the one that is anticipated.

An LSTM is frequently assessed for multi-class categories with the use of measures

consisting of accuracy, F1 rating, and, precision and recall. Metrics are used to evaluate

the overall performance of the LSTM model on the check dataset, which includes

examples that were excluded from the training set.

LSTMs are great for multi-elegance classification because they can detect lengthy-time

period dependencies inside the input collection and set up complex, nonlinear connections

among the entered records and the class labels. However, the quantity of LSTM layers,

the range of neurons in each layer, and the learning ratio are a few of the hyperparameters

that define the LSTM's overall performance. To enhance the LSTM's overall performance

by looking at a dataset, these hyperparameters can be changed using grid search and

random search strategies.

53

Figure 4.4 LSTM Classifier under consideration. The model has a single hidden layer

with 64 units.

4.6 Compiled Model

 After processing the dataset and categorizing it into binary and multiclass classifications,

we will train the model that we will use in the classification of the two models:

4.6.1 MLP Compiled Model

As Figures 4.3 and 4.5 illustrate, it is comprised of one input layer, five hidden layers, and

the activation "ReLU". Also, the "Dense" has 118 inputs when it first appears.

The output was sent to a dense, fully linked layer that included two or five neurons in

binary or multiclassification, using "sigmoid" or "SoftMax" activation functions,

respectively. The dropout layer has a dropout rate of 0.2 to minimize overfitting.

"Binary crossentropy" and "categorical crossentropy" from binary class and

multiclassification, respectively, as well as the metric chosen the "accuracy," obtained by

the "ADAM" (adaptive moment estimation) optimizer, were used to train the MLP model.

In the case of two categories, the definite must make the loss "binary crossentropy," while

in the case of more than two categories, the definite must make the loss "categorical

crossentropy."

We applied the model two times. The input dataset was first divided into training and

testing subsets of 80% and 20%, respectively. After that, it is divided into training and

testing portions of 75% and 25%, respectively, using test sizes of (0.2) and (0.25) and

random state (42). We used the model twice in this way. Training with 500 batch sizes,

54

20 epochs, and 0.2 validation rates is the next step. These requirements were developed

after thorough testing conducted in real-world scenarios.

(A)

(B)

Figure 4.5 Architecture MLP Classifier (A) Binary Classification, (B) Multi-class

Classification

4.6.2 LSTM Compiled Model

Figure 4.4 and Figure 4.6 depict a neural network architecture with an input layer, a single

LSTM layer, and an output layer. To guarantee fairness in comparison, the LSTM layer

used 64 neurons for storing the input information, which corresponds to the number of

memory units or cells in the LSTM layer. Additionally, the input dimensions were set to

118 for binary classification and 93 for multiclassification.

The result was fed into a densely linked layer with either 2 or 5 neurons, using "sigmoid"

and "SoftMax" activation functions for binary and multiclass classification, respectively.

The dropout layer is implemented using a dropout rate of 0.2 in order to mitigate the

problem of overfitting.

The LSTM model was trained using the "ADAM" optimizer, which is an adaptive moment

estimation optimizer. The loss function used was "binary crossentropy" for binary

55

classification and "categorical crossentropy" for multiclassification. The measure used to

evaluate the model's performance was "accuracy".

When dealing with two categorical variables, it is necessary to use the "binary

crossentropy" loss function. Simultaneously, the loss function known as "categorical

crossentropy" is used when dealing with more than two categories.

Additionally, we used the model twice. Initially, the input dataset was divided into 80%

for training and 20% for testing. Then, it was further divided into 75% for training and

25% for testing, with test sizes of 0.2 and 0.25 correspondingly, and a random state of 42.

Next, the training will be conducted using 20 epochs, a batch size of 500, and a validation

rate of 0.2. The selection of these values was based on an empirical investigation carried

out via a series of diverse tests.

(A)

(B)

Figure 4.6 Architecture LSTM Classifier (A) Binary Classification, (B) Multi-class

Classification

The Compile model with Adam optimizer, binary cross-entropy loss, and accuracy metric.

If we have two categorical must make the loss=binary_crossentropy :

model.compile(optimizer='adam', loss='binary_crossentropy',

metrics=['accuracy'])

However, when having more than categorical must be created the

loss=categorical_crossentropy :

model.compile(loss='categorical_crossentropy', optimizer='adam',

metrics=['accuracy'])

- Optimizer: Adam, the optimizer The Adam optimizer is a well-liked optimization

method that's often used in deep learning model training. The algorithm modifies the

56

learning rate during training by considering the prior gradients, resulting in an

extraordinarily successful and efficient optimization technique.

- Loss Function: To assess the difference between two probability distributions, a

mathematical function known as binary cross-entropy is used, especially when dealing

with binary classification problems. The binary cross-entropy loss function is often

used in binary classification tasks, where events must be categorized into one of two

categories, such as incursion or normal. Greater model performance is indicated by

lower values. The statistic calculates the discrepancy between the true binary labels

and the estimated probability.

- Metrics: Precision Accuracy is a common evaluation criterion for classification tasks.

The percentage of accurately recognized instances among all occurrences in the dataset

is computed. In this instance, the accuracy measure will be used to assess the model's

performance throughout training and testing. Better accuracy metric values correspond

to better performance.

You may use Keras' compile function to specify the optimizer, loss function, and

evaluation metrics for the model before it is trained. You are building the model to be

trained with these particular parameters, which are often used for network intrusion

detection applications. During model compilation, you specifically define the Adam

optimizer, binary cross-entropy loss, and accuracy measure.

4.7 Description of the Network Attack

 A network attack is a deliberate attempt to unlawfully infiltrate an organization's

network, steal data, or carry out other malicious activities. There are two main

classifications of network attacks:

4.7.1 Passive

Attackers enter a network and can clandestinely monitor or pilfer personal data while

abstaining from altering the information, and keeping it in its original state.

4.7.2 Active

 Attackers not only receive illegal access but also exploit data by deleting, encrypting, or

driving other forms of damage to it.

Network assaults are distinct from several other types of attacks.

57

Endpoint assaults include the unauthorized infiltration of user devices, servers, or other

endpoints. These assaults often compromise the devices by infecting them with malicious

software.

Unauthorized program introduction into IT resources is known as a malware attack. This

kind of assault gives attackers access to systems, allows them to steal data, and causes

damage. Ransomware is another one of these assaults.

The firm is prone to vulnerabilities, exploits, and attacks that specifically target flaws in

software. These attacks aim to gain unauthorized access, compromise, or cause harm to

the organization's systems.

Advanced persistent threats (APTs) are highly complex and varied forms of attacks that

span several types of assaults, such as network attacks and others.

During a network attack, attackers focus on penetrating the perimeter of the company

network and gaining access to inside systems. Often, after an intrusion occurs, attackers

may include other types of attacks, such as compromising a device, spreading malicious

software, or exploiting a weakness in a system inside the network.

4.8 Intrusion Detection System) IDS)

Intrusion detection structures, or IDSs for short, are a type of security technology aimed

at detecting and preventing unauthorized access, abuse, and intrusions into laptop

networks and systems. An intrusion detection gadget's (IDS) goal is to pick out unusual

or malicious behaviour taking place on a network or machine and notify system directors

or security professionals so they may take the perfect measures to lower the chance [103].

There are two main types of IDS: network-based and host-based:

Network-based Intrusion Detection Systems (NIDS) Analyze community information

for signs of doubtful behaviour and unlawful access. Port scanning, denial of carrier (DoS)

assaults, and efforts to take advantage of weaknesses in community protocols or programs

are just a few of the threats that Network Intrusion Detection Systems (NIDS) may

additionally pick out.

 Host-based Intrusion Detection Systems (HIDS) are mounted on non-public computer

systems and reveal activities and system logs for indicators of malicious activity. Host-

58

based intrusion detection structures (HIDS) may also become aware of numerous threats,

consisting of attempts to get unauthorized access, adjustments to device configuration

documents, and malware infestations.

IDS may use a variety of detection strategies, which include heuristic, signature-primarily

based, and anomaly detection. Anomaly detection searches for styles of behaviour that

deviate from regular hobbies, while signature-based detection compares device or network

interest to a database of recognized threat signatures. Heuristic detection is the system of

identifying, in all likelihood, suspicious pastimes by way of the use of attempted and

actual assault strategies.

When something appears suspicious, an intrusion detection gadget (IDS) might also alert

the gadget administrator or safety specialists. Alerts may be dispatched via e-mail, textual

content messages, safety dashboard notifications, or different channels. Administrators or

security personnel might also pick up any vulnerabilities within the machine or software,

disconnect the affected device from the network, or block the attack's supply after reading

the warning.

IDS often provides a large contribution to an all-encompassing security strategy that

safeguards terminal networks and structures. They offer an extra line of protection against

cyber threats and reduce the danger of protection breaches and information loss.

An intrusion detection system (IDS) is a monitoring tool that is used to identify and

analyze all potentially dangerous network actions. Anomaly-based total detection and

signature-based detection are the two principal strategies used to build an intrusion

detection machine (IDS). An intrusion detection gadget (IDS) compares incoming visitors

to a database of previously produced signatures, making use of attack signatures.

Therefore, an assault is only detectable with the aid of the gadget if its signature is

observed in the database. An anomaly-pushed intrusion detection device (IDS) keeps an

eye fixed on network data to identify any uncommon conduct that doesn't shape the

anticipated styles of typical network interest. The signature-based detection method has

inherent faults, such as being easy to attack by zero-day attacks or attacks that have been

altered to avoid detection by the signature database. Machine Learning techniques and

knowledge of methods are very compatible with anomaly-primarily-based intrusion

59

detection structures (IDS) because they allow the IDS to be successfully taught to

discriminate between benign regular site visitors and malicious attack site visitors.

The Three Approaches to Intrusion Detection Systems

4.8.1 Intrusion Detection Based on a User's Signature

The purpose of Signature-Based Intrusion Detection Systems, commonly known as SIDS,

is to find patterns and correlate them with known signs of intrusion.

A “SIDS” takes advantage of a database that includes knowledge about prior assaults. The

detection system will send an alert to the administrator if any behavior on your network

has a "signature" that is equivalent to that of an attack or security breach in the database

[104].

Ensuring continuous changes to the database is vital for a SIDS solution since it is the

basic backbone of the system. A SIDS system can only identify risks that it has already

encountered. Hence, even with continuous changes to the database, your company's

security may still be exposed to innovative infiltration tactics.

4.8.2 Intrusion Detection Based on a Unusual Behavior

On the other hand, An Anomaly-Based Intrusion Detection System, or AIDS, may be able

to identify these unique zero-day assaults.

AIDS uses machine learning (ML) and statistical data to create a model of "normal"

behavior. If a transmission departs in any manner from its typical pattern, the system will

flag it as possibly malicious [104].

When comparing AIDS with SIDS, the biggest worry is the potential for an erroneous

diagnosis. Ultimately, not all alterations are the consequence of illegal behaviour; rather,

some are just an expression of shifts in the organization's general ethics. However, since

SIDS do not have access to a database of known assaults, they are more likely to flag any

and all abnormalities as intrusions.

4.8.3 Intrusion Detection using Hybrid Methods

With a hybrid approach, the benefits of both kinds of systems might be combined. A

hybrid intrusion detection system can detect both novel and pre-existing intrusion

60

scenarios since it examines both isolated occurrences and recurring trends [104]. The

greater number of issues that are found is the only disadvantage of a hybrid approach.

However, because the goal of an intrusion detection system (IDS) is to identify potential

intrusions, it is difficult to see this rise of flags as a negative development.

4.9 Confusion Matrix

A confusion matrix is a popular technique for examining the performance of a machine-

learning system. It is a matrix containing actual values against expected values, where

each column shows the percentage of samples that the model predicted correctly or

inaccurately.

The confusion matrix is often employed in scenarios involving binary categorization,

where there are two potential outcomes (e.g., positive or negative). This 2 x 2 matrix may

produce the following four products:

•True Positive (TP): The sample in the positive class was accurately predicted by the

model.

•False Positive (FP): An incorrect prediction was made by the model indicating that the

sample was in a positive class.

•True Negative (TN): The sample's membership in the negative class was correctly

predicted by the model.

•False Negative (FN): The sample was incorrectly predicted by the model to belong to the

negative class.

A variety of criteria are used to assess the efficacy of a classifier. Table 4.5 provides a

brief explanation of each of the four potential outcomes associated with a detection

strategy.

Using a tabular form called a confusion matrix, an actual attack is compared to an expected

attack. by dividing the projected intrusion value (cell value in the confusion matrix row)

by the total number of real invasions to get a normalized result. The recall of the model is

the number of predicted values that agree with the actual values. It may be located by

analyzing the values along the principal diagonal members of the confusion matrix. In an

ideal model, a value of "0" would be shown everywhere else, and a value of "1" just on

61

the main diagonal. The accuracy is determined by dividing the total number of

occurrences (the sum of the whole matrix) by the number of cases that were correctly

predicted (the sum of the diagonal terms), as shown in the following Figures.

Table 4.5 Confusion Matrix

Actual

Normal Attacks

P
re

d
ic

te
d

Normal
True

Positive

False

Positive

Attacks
False

Negative

True

Negative

Figure 4.7 Matrix of Confusion the Attacks Distribution

62

Figure 4.8 Matrix of Confusion for Binary Attacks Distribution

Figure 4.9 Confusion Matrix of Multiclass Attacks Distribution

Figure 4.10 Confusion Matrix of Multi-Class Classification using MLP Classifier

63

Figure 4.11 Confusion Matrix of Multi-Class Classification using LSTM Classifier

Figure 4.12 Confusion Matrix of Binary Classification with MLP Classifier

Figure 4.13 Confusion Matrix of Binary Classification with LSTM Classifier

64

5

 RESULTS AND DISCUSSION

The whole set of our study's findings is presented in this section. It begins by outlining

the assessment criteria, the KDD99 datasets that are used, and the programming

environment. It then provides comprehensive results for every strategy. It concludes by

describing the results obtained.

5.1 Programming Environments

The deep neural network necessitates numerous computations primarily involving matrix

multiplications and additions. Therefore, employing a GPU is crucial to minimizing the

time spent on model training.

- Google Colab: The Google Collaboratory (CoLab) is a cloud-based interactive

development environment that is free to use for Jupyter notebooks that are hosted on

Google’s servers.

The following libraries are used in this work: There are also many built-in deep

learning libraries, but Tensorflow and Keras are mostly used ones.

• Numpy: includes mathematical functions.

• Pandas: for data analysis and manipulation.

• ScikitLearn: is a machine-learning library used for the predictive analysis of data

(SVM, PCA, train-test dataset splitting, k-fold, performance metrics, etc. . . .).

• Tensorflow: deep learning library developed by Google (probability, 2D, and

3D convolution, etc. . . .)

• Keras: is a deep learning library (CNN, Transfer learning models,

EffcientNet performance measurement functions, etc. . . .).

65

5.2 Datasets

We define our intrusion detection learning problem using the KDD99 dataset. KDD99 is

the most widely used benchmark dataset for intrusion detection systems (IDS) it contains

494020 rows and 41 columns. To make raw TCP packets more useful for machine learning

models, compilers used the DARPA1998 dataset and extracted 41-dimensional features,

which comprised both labels and raw TCP packets. As a result, the KDD99 dataset was

curated to generate a new dataset.

The labels in the DARPA 1998 and KDD 1999 datasets are identical. The attributes of

KDD99 may be categorized into four groups: main characteristics, host-based statistical

characteristics, content-based statistical characteristics, and time-based statistical

characteristics [105].

After training the model on the test set (also referred to as a validation set), we calculate

the effectiveness metrics and calibrate the decision parameters, such as the classifier

threshold. We next use the production set, which is an unlabeled dataset, to find the

abnormalities. When the model is put into production, it will make predictions on real-

time data without labels to compare; therefore, the last step is crucial. Consequently, to

ensure that the model does not behave weirdly on this unknown batch of unlabeled data,

it is usually a good idea to wait for a production set (rather than a validation set or test

set).

Figure 5.1 Distribution of normal and abnormal Attack

66

Table 5.1: Examples of KDD CUP 99 Features

Attribute name Type Description

Protocol type Discrete type of the protocol, e.g. tcp, udp, etc.

Service Discrete
network service on the destination, e.g., http,

telnet, etc.

Flag Discrete normal or error status of the connection.

Logged in Discrete 1 if successfully logged in; 0 otherwise.

Land Discrete
1 if the connection is from/to the same host/port;

0 otherwise

Duration Continuous Length (in seconds) of the connection

Dst bytes Continuous
number of data in bytes sent from destination to

source.

Src bytes Continuous
number of data in bytes sent from the source to

the destination.

Urgent Continuous number of urgent packets.

wrong

fragment
Continuous number of “wrong” fragments.

Hot Continuous number of “hot” indicators.

Num failed

logins
Continuous number of failed login attempts.

Table 5.2 Distribution of KDD Cup 99 Classes

 Normal DoS Probe R2L U2R

Training
97278

(19.69%)

391458

(79.24%)

4107

(0.83%)

1126

(0.23%)

52

 (0.01%)

Test
60593

(19.48%)

229855

(73.90%)

4166

(1.34%)

16345

(5.26%)

70

 (0.02%)

67

Table 5.3 Number of attack labels

Name of

Attack
Smurf Neptune Normal Back

No. of

Attack
280790 107201 97277 2203

Name of

Attack
Satan Ip sweep

Port

sweep
Warez client

No. of

Attack
1589 1247 1040 1020

Name of

Attack
Teardrop Pod Nmap

Guess

password

No. of

Attack
979 264 231 53

Name of

Attack
Buffer

overflow
land

Ware

master
Lmap

No. of

Attack
30 21 20 12

Name of

Attack
Rootkit Load

module
Ftp_write Multihop

No. of

Attack
10 9 8 7

Name of

Attack
Phf Perl Spy

No. of

Attack
4 3 2

datasets are clustered into four different attack classes, As seen in Table 5.4 and Figure

5.2.

5.2.1 Denial OF Service (DOS)

stands for "denial of service," an assault that has the potential to force a computer to crash

or operate more slowly. These attacks are carried out by providing the server with more

traffic data than it is capable of handling at once. DoS attacks have a detrimental effect on

legally permitted network traffic or service accessibility. Consequently, denial of service

(DoS) attacks are among the most prevalent types of attacks on network resources that

stop users from using network services. DoS attacks may take many different forms, and

each one has a unique method of depleting network resources to accomplish the hacker's

objective, which is to stop users from accessing the network [106].

68

5.2.2 Root to Local (R2L)

A specific kind of computer network assault is called "root to local," in which an attacker

sends a sequence of packets to a server or next-side machine across a network that the

hacker is not permitted to access as a local user. One may claim that by remotely

delivering false packets to the system, they provide illegal local access to a machine. R2L

assaults are referred to as "root to local" attacks.

5.2.3 User to Root (U2R)

 A user-to-root attack (U2R) is a different kind of attack where the hacker repeatedly tries

to get access to network resources as a normal user before managing to become a

complete-access user. Hackers exploit vulnerabilities in the system in the same way that

regular users do [106].

5.2.4 Prob

"Probing" is another word for a probe. A third kind of attack is known as probing, in which

a hacker looks for open ports or weaknesses in the topological design of network devices,

and then subsequently leverages such flaws to get personal information without

permission. Numerous tools are available for network probing, such as Nmap, portsweep,

and ipsweep. is an attack that collects network data with the goal of getting past security

controls.

for this reason, “IDS works against all intruder attacks, making it an essential part of

building computer networks to capture these kinds of attacks in their early stages.”

Tabel 5.4 Attack profiles of DoS, R2L, U2R, Probe Classes

Attack

class
Attack profile

DoS
back, neptune, land, smurf, pod, teardrop, apache2, mailbomb,

processtable, udpstorm,worm.

R2L
ftp write, imap, guess passwd, multihop, phf, warezclient, spy,

warezmaster,,httptunnel,amed,sendmail, snmpgetattack,snmpgues,awa

re client,,xloc ,xsnoop.

U2R loadmodule, buffer overflow, rootkit, perl,ps,sqlattack,xterm.

Probe nmap, ipsweep, satan, portsweep,,mscan,saint.

69

Table 5.5 Attack class of DoS, R2L, U2R, Probe by count

Dos normal Probe R2L U2R

391458 97277 4107 1126 52

Figure5.2 Multi-class Classification

5.3 Evaluation Metrics

To evaluate the LSTM and MLP Models performance, we use the assessment measures.

They provide numerical metrics that assist us in choosing the most appropriate model for

the task at hand. Common assessment measures include F1-score, recall, accuracy, and

precision.

Accuracy is the percentage of records classified correctly, and it is computed using

the following formula:

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
 (5.1)

70

Precision (P) is the percentage of records correctly classified as anomalies out of

the total number of records classified as anomalies. Precision is computed as

follows:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (5.2)

Detection rate (DR), also called True Positive Rate or Recall, is the percentage of

records correctly classified as anomalies out of the total number of anomaly

records. A method to get the detection ratio is as follows:

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (5.3)

F-measure (F), which is the mathematical average of accuracy and recall, is computed

using the harmonic mean. It is used to assess test accuracy and acts as a direct indication

of the model's performance. A statistic having a range of 0 to 1, the F1 score seeks to get

a number as close to 1. It is calculated as follows:

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (5.4)

where the number of instances correctly identified as anomalous is expressed as TP (True

Positive); the number of instances that are correctly classified as normal is known as TN

(True Negative); False positives, or FPs, are the number of regular traffic patterns that are

mistakenly identified as anomalous, whereas false negatives, or FNs, are the number of

abnormal traffic patterns that are mistakenly identified as normal. The performances of

the proposed architectures (LSTM, MLP) were examined in binary (Normal, Abnormal)

and multi-classification (Normal, Dos, Probe, R2L) modalities in order to assess the

classifier's ability to correctly discriminate between normal and abnormal attacks. Tables

5.6 and 5.7 provide an overview of the accuracy, precision, recall, F1-score, and loss for

the suggested models (LSTM and MLP). All cases had a model accuracy of more than

99%, which increased the detection rate.

71

5.3.1 Binary Classification

Table 5.6 reports the outcomes of binary classification experiments; when splitting the

dataset 75% for training and 25% for testing, The LSTM and MLP classifiers achieved

F1 scores of 0.9958465271209442% and 0.9998352553542009% in detecting normal and

abnormal categories, respectively, whereas, LSTM also performed well in terms of

accuracy, with a performance rate of up to 99.83644485473633% with a loss of

0.7034842856228352% as compared to the MLP classifier which achieved accuracies of

99.99352097511292% with a loss of 0.04522902600001544%. LSTM in terms of

performance time with 152.73029232025146 seconds, compared to the MLP classifier

which achieved a performance time of 1008.4796767234802 seconds. However,

compared with the result in Tabel 5.7, when splitting the dataset 80% for training and

20% for testing, The LSTM and MLP classifiers achieved F1 scores of

0.999767675985441% and 0.9998708911095618 %, respectively, whereas, LSTM also

performed well in terms of accuracy, with a performance rate of up to

99.99089241027832% with a loss of 0.03050541563425213% as compared to the MLP

classifier which achieved accuracies of 99.99493956565857% with a loss of

0.03381400019861758%.LSTM in terms of performance time with 170.23747491836548

seconds, compared to the MLP classifier which achieved a performance time of

1111.6987471580505 seconds.

Also, we got from the Tabel 5.6, Precision with the result as 0.9944152431011827 for

LSTM and Recell with 0.9972819372374598. Likewise Precision MLP

0.999917620891342, and Recell with 0.9997529033852236.

While, In Tabel 5.7, the Precision for LSTM is 0.9995870541475249, and Recell

0.9999483631106062, Likewise for Precision MLP 1.0, and Recell with

0.9997418155530311. With the different hidden layers, our results are measured in

Figures 5.3 and 5.4.

5.3.2 Multi Classification

Table 5.6 reports the outcomes of multi-classification experiments; when splitting the

dataset 75% for training and 25% for testing, The LSTM and MLP classifiers achieved

F1 scores of 0.997145913650768% and 0.9999028355816101% in detecting normal and

abnormal categories, respectively, whereas, LSTM also performed well in terms of

72

accuracy, with a performance rate of up to 99.99756813049316% with a loss of

0.014561950229108334% as compared to the MLP classifier which achieved accuracies

of 99.99271035194397% with a loss of 0.06861906149424613%. LSTM in terms of

performance time with 150.2320737838745 seconds, compared to the MLP classifier

which achieved a performance time of 1057.5126361846924 seconds. However,

compared with the result in Tabel 5.7, when splitting the dataset 80% for training and

20% for testing, The LSTM and MLP classifiers achieved F1 scores of

0.9952305406562414% and 0.9998532440652406 %, respectively, whereas, LSTM also

performed well in terms of accuracy, with a performance rate of up to

99.99696612358093% with a loss of 0.014984085282776505% as compared to the MLP

classifier which achieved accuracies of 99.98583197593689% with a loss of

0.46352697536349297%.LSTM in terms of performance time with 184.8968095779419

seconds, compared to the MLP classifier which achieved a performance time of

1111.741890668869 seconds.

Also, we got from the Tabel 5.6, Precision with the result as 0.9943160776104983 for

LSTM and Recell with 0.9999919031618153. Likewise for Precision MLP

0.9999271249159912, and Recell with 0.9998785474272297.

In Tabel 5.7, the Precision for LSTM is 0.9905063608384879, and Recell 1.0, Likewise

for the MLP, the Precision is 0.999858303897655, and Recell with 0.9998481842840371.

With the different hidden layers, our results are measured in Figures 5.3 and 5.4.

73

Table 5.6 Schedule of performance of models (LSTM and MLP), splitting the dataset

75% for training and 25% for testing

Model LSTM MLP

Class Binary Multiclass Binary Multiclass

Accuracy 99.83644485473633% 99.99756813049316% 99.99352097511292% 99.99271035194397%

Precision 0.9944152431011827 0.9943160776104983 0.999917620891342 0.9999271249159912

Recall(DR) 0.9972819372374598 0.9999919031618153 0.9997529033852236 0.9998785474272297

F1- score 0.9958465271209442 0.997145913650768 0.9998352553542009 0.9999028355816101

Loss 0.703484285622835% 0.0145619502291083% 0.04522902600001544% 0.06861906149424613%

Time(s) 152.73029232025146 150.2320737838745 1008.4796767234802 1057.5126361846924

Table 5.7 Schedule of performance of models (LSTM and MLP), splitting the dataset

80% for training and 20% for testing

Model LSTM MLP

Class Binary Multiclass Binary Multiclass

Accuracy 99.99089241027832% 99.99696612358093% 99.99493956565857% 99.98583197593689%

Precision 0.9995870541475249 0.9905063608384879 1.0 0.999858303897655

Recall(DR) 0.9999483631106062 1.0 0.9997418155530311 0.9998481842840371

F1- score 0.999767675985441 0.9952305406562414 0.9998708911095618 0.9998532440652406

Loss 0.03050541563425213% 0.0149840852827765% 0.03381400019861758% 0.46352697536349297%

Time(s) 170.23747491836548 184.8968095779419 1111.6987471580505 1111.741890668869

(A)

(B)

Figure 5.3 (A) Accuracy throughout Epoch, (B) loss throughout Epoch for the MLP

Model (Binary Classification)

74

(A)

(B)

Figure 5.4 (A) Accuracy throughout Epoch, (B) loss throughout Epoch for the LSTM

Model (Binary Classification)

(A)

(B)

Figure 5.5 (A) Accuracy throughout Epoch, (B) loss throughout Epoch for the MLP

Model ((Multi-class Classification)

(A)

(B)

Figure 5.6 (A) Accuracy throughout Epoch, (B) loss throughout Epoch for the LSTM

Model ((Multi-class Classification)

75

6

 CONCLUSIONS

The use of Deep Learning (DL) for detecting network intrusion traffic in IoT devices is a

promising approach to enhancing IoT security. By analyzing the network traffic data using

DL algorithms, it is possible to identify suspicious activities and prevent potential

cyberattacks.

The results of this study showcase remarkable performance metrics, with accuracy and

detection rates consistently averaging an impressive 99.99%. Notably, the loss rate

attained a remarkably low figure of 0.7%, underscoring the system's capability to discern

normal data from potential attacks with exceptional precision. The study in this domain

has scrutinized and categorized individual traffic data.

However, as part of prospective endeavours, the exploration of real-time deep analysis of

data emerges as a promising avenue. We underscored our trajectory by the pursuit of

criteria facilitating faster decision-making processes, a concerted effort to mitigate

computational complexity, and an orientation towards handling the challenges posed

through big data in intrusion detection contexts.

Some of the key conclusions from using DL for IoT security are:

DL-based intrusion detection systems (IDS) can improve the accuracy of detecting

network attacks in IoT devices.

DL-based IDS can analyse large amounts of network traffic data in real time, which is

essential on IoT devices that generate vast amounts of data.

The accuracy of DL-based IDS can be further enhanced by using different DL models and

techniques, such as recurrent neural networks (RNNs) and convolutional neural networks

(CNNs).

The implementation of DL-based IDS in IoT devices can also help in reducing false

positives and false negatives, which are significant issues in traditional IDS.

DL-based IDS can be trained to detect new and previously unknown types of attacks,

which is a significant advantage over rule-based IDS.

76

In summary, DL-based intrusion detection systems have the potential to provide robust

security for IoT devices by accurately detecting and preventing cyberattacks. However,

the effectiveness of these systems depends on the quality and quantity of training data, the

selection of appropriate DL models, and the continuous improvement of the system to

adapt to new types of attacks.

77

REFERENCES

[1] G. Jaina and R. R. Prasad, "IoT Enabled Multi-Antenna Communication Channel

with Deep Learning Network," Proceedings of the International Conference on

Recent Advances in Computational Techniques (IC-RACT), pp. 179-184, 2020.

[2] A. Saint, "Where next for the Internet of things, Information Technology Internet of

Things," Engineering and Technology, vol.10, no. 1, pp. 72-75, 2015.

[3] K. Jagdale, C. Shelke and R. Achary, "Artificial Intelligence and its Subsets:

Machine Learning and its Algorithms," Deep Learning and their Future Trends. vol.

9, pp. 112-117, 2022.

[4] Diwakar Bhardwaj, "Study of Significant and Competent Intrusion Detection

System by FA-SVM Technique," European Journal of Molecular and Clinical

Medicine, vol. 7, no.4, 2020.

[5] M. M. N. Aboelwafa, K. G. Seddik, M. H. Eldefrawy, Y. Gadallah and M. Gidlund,

"A Machine-Learning-Based Technique for False Data Injection Attacks Detection

in Industrial IoT," IEEE Internet of Things Journal, vol. 7, no. 9, pp. 8462-8471,

2020.

[6] L. Liu, J. Yang and W. Meng, "Detecting malicious nodes via gradient descent and

support vector machine in the Internet of Things," Computers and Electrical

Engineering, vol. 77, pp. 339-353, 2019.

[7] M. Anwer, Khan, S. M., Farooq and Waseemullah, "Attack Detection in IoT using

Machine Learning. Engineering," Technology and Applied Science Research, vol.

11, no. 3, pp. 7273-7278, 2021.

[8] R. Shyam and G. Awasthi, "Role of Deep Learning in Image Recognition," Journal

of Image Processing and Pattern Recognition Progress, vol. 8, no. 2, pp. 34-39,

2021.

[9] A. Jayaswal and R. Nahar, "Detecting Network Intrusion through a Deep Learning

Approach," International Journal of Computer Applications, vol. 180, no. 14, pp.

15-19, 2018.

[10] Usman Inayat, Muhammad Fahad Zia, Sajid Mahmood, Haris M. Khalid and

Mohamed Benbouzid, "Learning-Based Methods for Cyber Attacks Detection in

IoT Systems: A Survey on Methods, Analysis, and Future Prospects," Technology

and Applied Science Research, vol. 11, no. 9, pp. 7273-7278, 2022.

[11] M. Kohler, and A. Krzyzak, "Over-parametrized deep neural networks minimizing

the empirical risk do not generalize well," Bernoulli, vol. 27, no. 4, pp. 2564-2597,

2021.

[12] Md. Imtiaz Ahmed and Fatima Shefaq, "A Study on Machine Learning and

Supervised and Deep Learning Algorithms to Predict the Risk of

Patients," International Journal of Practical Healthcare Innovation and Management

Techniques, vol. 9, no.1, pp. 1-12, 2022.

78

[13] S. Niksefat, P. Kaghazgaran and B. Sadeghiyan, "Privacy issues in intrusion

detection systems: A taxonomy, survey and future directions,” Computer Science

Review, vol. 25, pp. 69-78, 2017.

[14] S.M. Khan, M. U. Farooq and W. Waseemullah, "Attack Detection in IoT using

Machine Learning," Engineering, Technology and Applied Science Research, vol.

11, no. 3, pp. 7273-7278, 2021.

[15] Z. Allam, and Zaynah A. Dhunny, "On big data, artificial intelligence and smart

cities," Cities, vol. 89, pp. 80-91, 2019.

[16] Krishna Kumar Mohbey, "An Efficient Framework for Smart City Using Big Data

Technologies and Internet of Things," Advanced Computing and Intelligent

Engineering, pp. 319-328, 2019.

[17] Y. Khlaponin, Lesja M. Kozubtsova, I. Kozubtsov and R. Shtonda, "Functions of

The Information Security and Cybersecurity System of Critical Information

Infrastructure," Cybersecurity Education, Science Technique, vol. 3, no. 15, pp.

124-134, 2022.

[18] A. Elsaeidy, I. Elgendi, K. S. Munasinghe, D. Sharma and A. Jamalipour, "A smart

city cyber security platform for narrowband networks," International

Telecommunication Networks and Applications Conference (ITNAC), pp.1-6,

2017.

[19] J. Foley, N. Moradpoor and H. Ochen, "Employing a Machine Learning Approach

to Detect Combined Internet of Things Attacks against Two Objective Functions

Using a Novel Dataset," Security and Communication Networks vol. 2, pp. 1-17,

2020.

[20] N. Sahar, R. Mishra and S. Kalam, "Deep Learning Approach-Based Network

Intrusion Detection System for Fog-Assisted IoT," International Conference on Big

Data Machine Learning and Their Applications, pp. 39-50, 2021.

[21] S. Kavitha, U. Maheswari, R.Venkatesh, "Network Anomaly Detection for Nsl-Kdd

Dataset Using Deep Learning," Information Technology In Industry, vol. 9, no. 2,

pp. 821-827, 2021.

[22] H. Neuschmied, M. Winter and B. Stojanovic, "APT-Attack Detection Based on

Multi-Stage Autoencoders, " Recent Advances in Cybersecurity and Computer

Networks, vol. 12, no. 13, 2022.

[23] A. Khamparia, S. D. Pande, D. Gupta and A. K. Sangaiah, "Multi-level framework

for anomaly detection in social networking," Hi-Tech, vol. 38, no. 2, pp. 350-366,

2020.

[24] Aswani K. Cherukuri, and I. S. Thaseen, "Intrusion detection model using feature

extraction and LPBoost technique," International Journal of Internet Technology

and Secured Transactions, vol. 8, no. 4, pp. 635-652, 2018.

[25] B. A. Tama, M. Comuzzi and K. H. Rhee, "TSE-IDS: A Two-Stage Classifier

Ensemble for Intelligent Anomaly-Based Intrusion Detection System," IEEE

Access, vol. 7, pp. 94497-94507, 2019.

79

[26] M. Panda, A. Abraham, S. Das, and M. R. Patra, "Network intrusion detection

system: A machine learning approach," Intelligent Decision Technologies, vol. 5,

no. 4, pp. 347-356, 2011.

[27] B. Ingre and A. Yadav, "Performance analysis of NSL-KDD dataset using ANN,"

International Conference on Signal Processing and Communication Engineering

Systems (SPACES), pp. 92-96, 2015.

[28] S. Mukkamala, A. H. Sung, and A. Abraham, "Intrusion detection using an

ensemble of intelligent paradigms," Journal of Network and Computer

Applications, vol. 28, no. 2, pp. 167-182, 2005.

[29] H. Alqahtani, I. H. Sarker, A. Kalim and S. Hossain, "Cyber Security Intrusion

Detection using Machine Learning Techniques," International Conference on

Computing Science, Communication and Security (COMS2), vol. 2, 2020.

[30] K. Aggarwal, M. M. Mijwil, S. Garg and S. Abdul Rahman, "Has the Future Started?

The Current Growth of Artificial Intelligence, Machine Learning, and Deep

Learning," Iraqi Journal for Computer Science and Mathematics, vol. 3, no.1, pp.

115-123, 2022.

[31] Yuefei Zhu, Jinlong Fei and X. He, "A Deep Learning Approach for Intrusion

Detection Using Recurrent Neural Networks," IEEE vol. 5, pp. 21954-21961, 2017.

[32] A. Aldweesh, Abdelouahid Derhab, and A. Emam, "Deep learning approaches for

anomaly-based intrusion detection systems: A survey, taxonomy, and open

issues," Knowledge-Based Systems, vol. 189, pp. 105-124, 2020.

[33] R. Vinayakumar, M. Alazab, K. P. Soman, P. Poornachandran, A. Al-Nemrat and

S. Venkatraman, "Deep Learning Approach for Intelligent Intrusion Detection

System," IEEE Latin-American Conference on Communications (LATINCOM),

vol. 7, pp. 41525-41550, 2019.

[34] T. A. Tang, L. Mhamdi, D. McLernon, S. A. R. Zaidi and M. Ghogho, "Deep

Learning Approach for Network Intrusion Detection in Software Defined

Networking," International Conference on Wireless Networks and Mobile

Communications (WINCOM), pp. 258-263, 2016.

[35] K. M. Sydney, "A deep learning technique for intrusion detection system using a

Recurrent Neural Networks based framework," Computer Communications, vol.

199, pp.113-125, 2023.

[36] N. Shone, T. N. Ngoc, V. D. Phai and Q. Shi, "A Deep Learning Approach to

Network Intrusion Detection," IEEE Transactions on Emerging Topics in

Computational Intelligence, vol. 2, no. 1, pp. 41-50, 2018.

[37] R. Vinayakumar, Kp. Soman and P. Poornachandran, "Evaluation of Recurrent

Neural Network and Its Variants for Intrusion Detection System

(IDS)," International Journal of Information System Modeling and Design, vol. 8,

no. 3, pp. 43-63, 2017.

[38] B. Dong and X. Wang, "Comparison Deep Learning Method to Traditional Methods

Using for Network Intrusion Detection," IEEE International Conference on

Communication Software and Networks (ICCSN), pp. 581-585, 2016.

80

[39] R. Zhao, R. Yan, Zh. Chen, K. Mao, P. Wang and R. X. Gao, "Deep Learning and

Its Applications to Machine Health Monitoring," Mechanical Systems and Signal

Processing, vol. 115, pp. 213-237, 2019.

[40] S. Hou, A. Saas, L. Chen and Y. Ye, "Deep4MalDroid: A Deep Learning

Framework for Android Malware Detection Based on Linux Kernel System Call

Graphs," IEEE International Conference on Web Intelligence Workshops (WIW),

pp. 104-111, 2016.

[41] L. You, Y. Li, Y. Wang, J. Zhang, and Y. Yang, "A deep learning based RNNs

model for an automatic security audit of short messages," International Symposium

on Communications and Information Technologies (ISCIT), pp. 225-229, 2016.

[42] K. Alrawashdeh and C. Purdy, "Toward an Online Anomaly Intrusion Detection

System Based on Deep Learning," IEEE International Conference on Machine

Learning and Applications (ICMLA), pp. 195-200, 2016.

[43] Jin Kim, Nara Shin, S. Y. Jo and S. H. Kim, "Method of intrusion detection using

deep neural network," IEEE International Conference on Big Data and Smart

Computing (Big Comp), pp. 313-316, 2017.

[44] A. Javaid, Q. Niyaz, W. Sun and M. Alam, "A Deep Learning Approach for

Network Intrusion Detection System," International Conference on Bio-Inspired

Information and Communications Technologies (BIONETICS), pp. 21-26, 2016.

[45] S. Potluri and C. Diedrich, "Deep Feature Extraction for Multi-Class Intrusion

Detection in Industrial Control Systems," International Journal of Computer Theory

and Engineering, vol. 9, no. 5, pp. 374-379, 2017.

[46] C. G. Cordero, S. Hauke, M. Mühlhäuser and M. Fischer, "Analyzing Flow-Based

Anomaly Intrusion Detection Using Replicator Neural Networks," Annual

Conference on Privacy, Security and Trust (PST), pp. 317-324, 2016.

[47] N. Shone, T. N. Ngoc, V. D. Phai and Q. Shi, "A Deep Learning Approach to

Network Intrusion Detection," IEEE Transactions on Emerging Topics in

Computational Intelligence, vol. 2, no. 1, pp. 41-50, 2018.

[48] M. J. Kang and J.W. Kang, “Intrusion Detection System Using Deep Neural

Network for In-Vehicle Network Security.” PLOS One, vol. 11, no. 6, 2016.

[49] E. Hodo, X. Bellekens, A. Hamilton, Ch. Tachtatzis and R. Atkinson, "Shallow and

Deep Networks Intrusion Detection System: A Taxonomy and Survey," Computer

Science-Cryptography and Security, vol.1, 2017.

[50] Q. Niyaz, W. Sun, A. Y. Javaid, "A Deep Learning Based DDoS Detection System

in Software-Defined Networking (SDN)," EAI Endorsed Trans. Security Safety,

vol. 4, no. 12, 2017.

[51] Y. Wang, W. Cai, P. Wei, "A Deep Learning Approach for Detecting Malicious

JavaScript Code," Security and Communication Networks, vol. 9, no. 11, pp. 1520-

1534, 2016.

[52] H. Lee, N. Kim and J. Lee, "Deep Neural Network Self-Training Based on

Unsupervised Learning and Dropout," International Journal of Fuzzy Logic and

Intelligent Systems, vol. 17, no. 1, pp. 1-9, 2017.

81

[53] A. K. Sahu, S. Sharma, M. Tanveer and R. Raja, "Internet of Things Attack

Detection Using Hybrid Deep Learning Model," Computer Communications, vol.

176, pp. 146-154, 2021.

[54] M. Z. Alom, V. Bontupalli and T. M. Taha, "Intrusion Detection Using Deep Belief

Networks," National Aerospace and Electronics Conference (NAECON), pp. 339-

344, 2015.

[55] R. M. Almejarb, O. M. Sallabi, F. F. Bushaala, A. Ali Mohamed, A. Fawzi and R.

Adel, "A Proposed Method for Detecting Network Intrusion Using Deep Learning

Approach," IEEE 3rd International Maghreb Meeting of the Conference on Sciences

and Techniques of Automatic Control and Computer Engineering (MI-STA), pp.

83-88, 2023.

[56] T. Singhania, V. Agarwal, Sunakshi, P.S. Giridhar and T. Gupta, "A Novel Intrusion

Detection System Using Deep Learning," International Conference on Innovative

Computing and Communications, Advances in Intelligent Systems and Computing,

vol. 1394, pp. 343-352, 2022.

[57] M. Wang, Y. Lu and J. Qin, "A Dynamic MLP-Based DDoS Attack Detection

Method Using Feature Selection and Feedback," Computers and Security, vol. 88,

2020.

[58] O. Jullian, B. Otero and E. Rodriguez, "Deep-Learning Based Detection for Cyber-

Attacks in IoT Networks: A Distributed Attack Detection Framework," Journal of

Network and Systems Management, vol. 31, no. 2, 2023.

[59] Y. Otoum, D. Liu and A. Nayak, "DL‐IDS: A Deep Learning–Based Intrusion

Detection Framework for Securing IoT," Transactions on Emerging

Telecommunications Technologies, vol. 33, no.3, 2022.

[60] J. R. Rose, M. Swann, G. Bendiab, S. Shiaeles and N. Kolokotronis, "Intrusion

Detection Using Network Traffic Profiling and Machine Learning for IoT," IEEE

7th International Conference on Network Softwarization (NetSoft), pp. 409-415,

2021.

[61] A. Ghosh, A. Sufian, F. Sultana, A. Chakrabarti and D. De, "Fundamental Concepts

of Convolutional Neural Network," Recent Trends and Advances in Artificial

Intelligence and Internet of Things, Intelligent Systems Reference Library, vol. 172,

pp. 519-567, 2019.

[62] W. Zaremba, I. Sutskever and O. Vinyals, "Recurrent Neural Network

Regularization," Neural and Evolutionary Computing, vol. 5, 2015.

[63] R. C. Staudemeyer and E. R. Morris, "Understanding LSTM - a tutorial into Long

Short-Term Memory Recurrent Neural Networks," Computer Science - Neural and

Evolutionary Computing, vol. 1909, 2019.

[64] H. M. Lynn, S. B. Pan and P. Kim, "A Deep Bidirectional GRU Network Model for

Biometric Electrocardiogram Classification Based on Recurrent Neural

Networks," IEEE Access, vol. 7, pp. 145395-145405, 2019.

[65] T. Kohonen, "Self-Organized Formation of Topologically Correct Feature

Maps," Biological Cybernetics, vol. 43, no. 1, pp 59-69, 1982.

82

[66] M. Sewak, S. K. Sahay and H. Rathore, "An Overview of Deep Learning

Architecture of Deep Neural Networks and Autoencoders," Journal of

Computational and Theoretical Nanoscience, vol. 17, no. 1, pp 182-188, 2020.

[67] M. P. Hosseini, S. Lu, K. Kamaraj, A. Slowikowski and H.C. Venkatesh, "Deep

Learning Architectures," Deep Learning: Concepts and Architectures, vol 866, pp.

1-24, 2019.

[68] G. V. Houdt, C. Mosquera and G. Napoles, "A Review on the Long Short-Term

Memory Model," Artificial Intelligence Review. vol. 53, no.1, pp. 5929-5955, 2020.

[69] L. Ma, Y. Chai, L. Cui, D. Ma, Y. Fu and A. Xiao, "A Deep Learning-Based DDoS

Detection Framework for Internet of Things," IEEE International Conference on

Communications (ICC), pp. 1-6, 2020.

[70] M. Gopinath, S. Chakkaravarthy and Sethuraman, "A comprehensive survey on

deep learning-based malware detection techniques," Computer Science Review,

vol. 47,2023.

[71] Fatih Taşpınar and Zehra Bozkurt, "Application of Artificial Neural Networks and

Regression Models in The Prediction of Daily Maximum Pm10 Concentration in

Düzce, Turkey," vol. 23, no. 10, 2014.

[72] M. M. Poulton, "Chapter 3 Multi-layer perceptrons and back-propagation learning,"

Handbook of Geophysical Exploration: Seismic Exploration, vol. 30, pp. 27-53,

2001.

[73] A.D. Dongare, R.R. Kharde and A. D. Kachare, "Introduction to Artificial Neural

Network," International Journal of Engineering and Innovative Technology (IJEIT),

vol. 2, no.1, 2012.

[74] M. C. Popescu, V. E. Balas, L. P. Popescu and N. Mastorakis, "Multilayer

Perceptron and Neural Networks," Wseas Transactions on Circuits and Systems,

vol. 8, no.7, 2009.

[75] K. A. Eşidir, Y. E. Gür, and A. Yoğunlu, "Estimation of Elaziğ Tourism Satisfaction

Analysis Results Using with Multilayer Perceptron (MLP) and Radial Basis

Function (RBF) Prediction Models," Journal of Social and Humanities Sciences

Research, vol. 9, no. 86, pp.1682-1703, 2022.

[76] H. Abdel, and Tamer H. M. Soliman, "A Multi-Layer Perceptron (MLP) Neural

Networks for Stellar Classification: A Review of Methods and Results,"

International Journal of Advances in Applied Computational Intelligence (IJAACI),

vol. 3, no. 2, pp. 29-37, 2023.

[77] K. Y. Chan, B. Abu-Salih and R. Qaddoura, "Deep neural networks in the cloud:

Review, applications, challenges and research directions," Neurocomputing, vol.

545, 2023.

[78] T. Menzies, E. Kocagüneli and B. Turhan, "Sharing Data and Models in Software

Engineering," Sharing Data and Models. Ch. 3, Book 2015.

[79] S. Sharma, S. Sharma and A. Athaiya, "Activation Functions in Neural Networks,"

International Journal of Engineering Applied Sciences and Technology, Vol. 4, no.

12, pp. 310-316, 2020.

83

[80] B. Ko, H. G. Kim, K.J. Oh and H. J. Choi, "Controlled dropout: A different approach

to using dropout on deep neural network," IEEE International Conference on Big

Data and Smart Computing (BigComp), pp. 358-362, 2017.

[81] C. Garbin, X. Zhu and O. Marques, "Dropout vs. batch normalization: an empirical

study of their impact to deep learning," Multimedia Tools and Applications, vol. 79,

pp.12777-12815,2020.

[82] M. A. Mercioni and S. Holban, "The Most Used Activation Functions: Classic

Versus Current," International Conference on Development and Application

Systems (DAS), pp. 141-145, 2020.

[83] D. Susmita, A. Tariq, T. Santos, S. S. Kantareddy and I. Banerjee, "Recurrent Neural

Networks (RNNs): Architectures, Training Tricks, and Introduction to Influential

Research Machine Learning for Brain," Neuromethods, vol. 197, pp. 117-138, 2023.

[84] O. I. Abiodun, A. Jantan, A. E. Omolara, K. V. Dada, N. AbdElatif Mohamed, H.

Arshad, "State-of-the-art in artificial neural network applications: A survey,"

Heliyon, vol. 4, no. 11, 2018.

[85] A. Tealab, "Time Series Forecasting using Artificial Neural Networks

Methodologies: A Systematic Review," Future Computing and Informatics, vol. 3,

no. 2, pp. 334-340, 2018.

[86] A. Graves, M. Liwicki, S. Fernández, R. Bertolami, H. Bunke, and J. Schmidhuber,

"A Novel Connectionist System for Unconstrained Handwriting

Recognition," IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 31, no. 5, pp. 855-868, 2009.

[87] H. Sak, A. Senior and F. Beaufays, "Long short-term memory recurrent neural

network architectures for large scale acoustic modeling," Proceedings of the Annual

Conference International Speech Communication Association, pp.338-342, 2014.

[88] X. Li and X. Wu, "Constructing long short-term memory based deep recurrent

neural networks for large vocabulary speech recognition," IEEE International

Conference Speech and Signal Processing (ICASSP), pp. 4520-4524, 2015.

[89] S. Grossberg, "Recurrent Neural Networks," Scholarpedia, vol. 8, no. 2, pp.1888,

2013.

[90] M. Jovo, K. Slobodan, R. Guberinic and K. Zarko, "Definisanje Maksimalnog

Koraka Napredovanja Mehanizovane Hidraulicne Podgrade (Mhp) Za Uslove

Rudnika Strmosten" Technical Sciences, vol. 7, no.1, pp. 35-42, 2012.

[91] S. Yanagawa, "Basic Unit: As a Common Module of Neural Networks," Electrical

Science and Engineering, vol. 3, no.1, 2021.

[92] S. Hochreiter and J. Schmidhuber, "Long Short-Term Memory," Neural

Computation, vol. 9, no. 8, pp 1735-1780, 1997.

[93] S. Fernandez, A. Graves, J. Schmidhuber, "An Application of Recurrent Neural

Networks to Discriminative Keyword Spotting," Artificial Neural Networks

(ICANN), vol. 4669, pp. 220- 229, 2007.

[94] J. Schmidhuber, "Deep Learning in Neural Networks: An Overview," Neural

Networks, vol. 61, pp. 85-117, 2015.

84

[95] A. Hannun, C. Case, J. Casper, B. Catanzaro, G. Diamos, E. Elsen, R. Prenger, S.

Satheesh, S. Sengupta, A. Coates and A. Y. Ng, "Deep Speech: Scaling up End-To-

End Speech Recognition," Computation and Language, vol. 1, 2014.

[96] B. Fan, L. Wang, F. K. Soong and L. Xie, "Photo-Real Talking Head with Deep

Bidirectional LSTM," IEEE International Conference on Acoustics, Speech and

Signal Processing (ICASSP), pp. 4884-4888, 2015.

[97] Z. Heiga, Y. Agiomyrgiannakis, N. Egberts, F. Henderson and P. Szczepaniak,

"Fast, Compact, and High-Quality LSTM-RNN Based Statistical Parametric Speech

Synthesizers for Mobile Devices," Computer Science and Sound, vol. 1, 2016.

[98] J. Oruh, S. Viriri and A. Adegun, "Long Short-Term Memory Recurrent Neural

Network for Automatic Speech Recognition," IEEE Access, vol. 10, pp. 30069-

30079, 2022.

[99] O. Vinyals, A. Toshev, S. Bengio, D. and Erhan, " Show and Tell: A Neural Image

Caption Generator," IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), pp. 3156-3164, 2015.

[100] K. H. Kim, B. Chang, and H. K. Choi, "Deep Learning Based Short-Term Electric

Load Forecasting Models using One-Hot Encoding," Journal of IKEEE, vol. 23, no.

3, pp. 852-857, 2019.

[101] A. Aldelemy, and R. A. Abd-Alhameed, "Binary Classification of Customer’s

Online Purchasing Behavior Using Machine Learning," Journal of Techniques, vol.

5, no. 2, pp. 163-186, 2023.

[102] B. M. Alsafy, Z. Mosad and W. K. Mutlag, "Multiclass Classification Methods: A

Review," International Journal of Advanced Engineering Technology and

Innovative Science (IJAETIS), vol.5, no.3, pp. 1-10, 2020.

[103] H. J. Liao, C. H. Richard Lin, Y. C. Lin and K. Y. Tung, "Intrusion Detection

System: A Comprehensive Review," Journal of Network and Computer

Applications, vol. 36, no. 1, pp. 16-24, 2013.

[104] A. Khraisat and A. Alazab, "A Critical Review of Intrusion Detection Systems in

the Internet of Things: Techniques, Deployment Strategy, Validation Strategy,

Attacks, Public Datasets and Challenges," Cybersecurity, vol.4, no.18, 2021.

[105] M. Tavallaee, E. Bagheri, W. Lu and A. A. Ghorbani," Detailed Analysis of the

KDD CUP 99 data set," IEEE Symposium, Computational Intelligence for Security

and Defense Applications (CISDA), vol. 2, 2009.

[106] C. Ieracitano, A. Adeel, F. C. Morabito and A. Hussain, "A novel statistical analysis

and autoencoder driven intelligent intrusion detection approach," Neurocomputing,

vol. 387, pp. 51-62, 2020.

85

PUBLICATIONS FROM THE THESIS

Conference Papers

1. Nadia ALSABBAGH and Hasan Hüseyin BALIK” Detection of the Network Intrusion

Traffic using Deep Learning”, In the Proceedings of the MFBK (3rd INTERNATIONAL

CONGRESS ON ENGINEERING AND SCIENCES), at the Virtual Conference of

3rd INTERNATIONAL CONGRESS ON ENGINEERING AND SCIENCES,

Istanbul, Turkey.11th - 12th-MAY-2024, pp. 300 Publisher Certificate No: 52866

 E-ISBN: 978-625-6471-27-6

https://drive.google.com/file/d/1PdN3851T6_2xkGjCU1Idseb9ipyte688/view?usp=shari

ng

https://drive.google.com/file/d/1PdN3851T6_2xkGjCU1Idseb9ipyte688/view?usp=sharing
https://drive.google.com/file/d/1PdN3851T6_2xkGjCU1Idseb9ipyte688/view?usp=sharing

